Hamilton Institute Seminar

Wednesday, March 23, 2022 - 16:00 to 17:00

Passcode: 279596

Speaker: Professor Arman Sabbaghi, Purdue University

Title: "A Closed-Loop Machine Learning and Compensation Framework for Geometric Accuracy Control of 3D Printed Products"

Abstract: Additive manufacturing (AM) systems enable direct printing of three-dimensional (3D) physical products from computer-aided design (CAD) models. Despite the many advantages that AM systems have over traditional manufacturing, one of their significant limitations that impedes their wide adoption is geometric inaccuracies, or shape deviations between the printed product and the nominal CAD model. Machine learning for shape deviations can enable geometric accuracy control of 3D printed products via the generation of compensation plans, which are modifications of CAD models informed by the machine learning algorithm that reduce deviations in expectation. However, existing machine learning and compensation frameworks cannot accommodate deviations of fully 3D shapes with different geometries. The feasibility of existing frameworks for geometric accuracy control is further limited by resource constraints in AM systems that prevent the printing of multiple copies of new shapes. We present a closed-loop machine learning and compensation framework that can improve geometric accuracy control of 3D shapes in AM systems. Our framework is based on a Bayesian extreme learning machine (BELM) architecture that leverages data and deviation models from previously printed products to transfer deviation models, and more accurately capture deviation patterns, for new 3D products. The closed-loop nature of compensation under our framework, in which past compensated products that do not adequately meet dimensional specifications are fed into the BELMs to re-learn the deviation model, enables the identification of effective compensation plans, and satisfies resource constraints by printing only one new shape at a time. The power and cost-effectiveness of our framework are demonstrated with two validation experiments that involve different geometries for a Markforged Metal X AM machine printing 17-4 PH stainless steel products. As demonstrated in our case studies, our framework can reduce shape inaccuracies by 30% to 60% (depending on a shape's geometric complexity) in at most two iterations, with three training shapes and one or two test shapes for a specific geometry involved across the iterations. Ultimately, our closed-loop machine learning and compensation framework provides an important step towards accurate and cost-efficient deviation modeling and compensation for fully 3D printed products using a minimal number of printed training and test shapes, and thereby can advance AM as a high-quality manufacturing paradigm.