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Abstract

Here, we analyse data from an experiment in Biodiversity and Ecosystem Functioning
theory. The response variable is the percentage of intercepted light by the canopy in forest
patches that were previously restored with three different numbers of species (treatments).
Because the experimental design includes multilevel and longitudinal sampling, we propose
two different approaches: (i) a conditionally specified beta mixed model; and (ii) a marginally
specified model where we include the covariance structure directly. While the interpretation
of the models resulting from these approaches differ, both strategies offer advantages for
modelling these data, as well as presenting some potential drawbacks.
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Introduction

According to the Biodiversity and Ecosystem Functioning (BEF) theory, with a higher species
diversity there is an increase in the number and intensity of ecosystem functions, which include
processes of energy flow, nutrient cycling, decomposition, and organic matter production (Car-
dinale et al., 2012). This is due to a more efficient use of resources, which allow for different
pathways for ecological processes across time and space. For forest restoration practitioners, the
application of this theory could be very useful. When developing a plan for forest restoration it
is desirable to re-establish ecological processes that can maintain a forest over time, without the
need for any kind of management, such as manuring, irrigation, or pest control. An important
variable in this context is light interception, which is an indicator of self-sustainability of a
forest. Higher light interception boosts photosynthesis and, consequently, biomass and carbon
storage by trees, which are important processes of a self-sustainable system, and a target of
forest restoration practices.

To assess whether higher tree diversity promotes (i) higher light interception and (ii) a
more even distribution of light, both horizontally and vertically in a forest, an experiment was
conducted in patches of restored Atlantic Forest in Brazil. There were three different levels of
species richness, 20, 60, and 117 species, with four replicates in a completely randomized design.
In each plot, twelve subplots were sampled at 0, 1, 2, 3, and 4 metres high, hence giving a form
of longitudinal (height) study. The observed variable was the percentage of light interception by
the canopy. The statistical analysis of this experiment is challenging, since we have a continuous
bounded response variable along with multilevel and longitudinal structures.

The main goal of this work is to propose and compare two approaches to analyse continuous
bounded data. First, we propose conditionally specified beta mixed models, where we include
random effects to incorporate the correlation between observations made within the same plot,
as well as among the longitudinal observations made within each subplot. Second, we propose
marginally specified models, where we model the marginal covariance structure directly using
a linear combination of known matrices. Finally, we discuss different computational strategies
for fitting these models and pinpoint advantages and potential drawbacks of both approaches.
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Methodology

Conditional approach

Let yijkl be the percentage of light intercepted by the canopy at the j-th replicate, j = 1, . . . , 4,
of the i-th treatment, i = 1, 2, 3, measured at the k-th subplot, k = 1, . . . , 12, at the l-th height
level, l = 1, . . . , 5. The Beta distribution is a reasonable assumption for modelling the response
variable, since it is bounded in the (0, 1) interval, with density function

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ{(1− µ)φ}
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1

with E(Y ) = µ ∈ (0, 1) and Var(Y ) = µ(1−µ)
φ+1 , where φ > 0 (Cribari-Neto and Zeileis, 2010)

Clearly longitudinal observations taken on the same subplot may be correlated, as may all
observations made on the same plot. To accommodate these correlations we include random
intercepts, b1ij , for observations in the same plot, and random intercepts, b2ijk, and slopes,
b3ijk, for observations on the same subplot. Then, we take the conditional distribution of
Yijkl|b1ij , b2ijk, b3ijk as Beta(µijkl, φijkl), with b1ij ∼ N(0, σ21),[

b2ijk
b3ijk

]
∼ N

([
0
0

]
,

[
σ22 σ23
σ23 σ23

])
,

and linear predictors

log

(
µijkl

1− µijkl

)
= β0i + b1ij + b2ijk + (β1i + b3ijk)hl

log(φijkl) = γ0i + γ1ihl

for the mean and dispersion parameters. Here hl are the height levels and β0i and β1i are
different intercepts and slopes over height per treatment for the mean parameter, while γ0i and
γ1i are different intercepts and slopes over height per treatment for the dispersion parameter.

We may write the log-likelihood as

l(θ|y) =
3∑
i=1

4∑
j=1

log

{∫ ∞
−∞

12∏
k=1

(∫ ∞
−∞

∫ ∞
−∞

5∏
l=1

f(yijkl;µijkl, φjikl)f(b2ijk, b3ijk)db2ijkdb3ijk

)
db1ij

}
,

with parameter vector θ = (β0,β1,γ0,γ1, σ
2
1, σ

2
2, σ

2
3, σ23)

>. The implementation of this model
and likelihood was made in R (R Core Team, 2017), and we used the Laplace approximation to
compute the integrals in the log-likelihood.

Marginal approach

Let y be the n×1 vector of percentages of light interception and X the n×p design matrix with
β the p × 1 parameter vector, including different intercepts and slopes over height per treat-
ment. Take E(Y) = µ = g−11 (Xβ), with g−11 (·) the inverse logit function, and Var(Y) = Σ =

V(µ)
1
2 (τ0I)V(µ)

1
2 , with V(µ) = diag{µi(1−µi)}, i = 1, . . . , n, and τ0 = 1

1+φ , with φ a dispersion
parameter. This corresponds to the variance-covariance matrix of a beta regression model for
independent observations. We now change the identity matrix I to a non-diagonal matrix Ω(τ ),

with τ a D × 1 dispersion parameter vector, giving Var(Y) = Σ = V(µ)
1
2 (Ω(τ ))V(µ)

1
2 . We

can model Ω(τ ) as a linear combination of known matrices Z1, . . . , ZD, g2(Ω(τ )) =
∑D

d=0 τdZd,
where g2(·) is a covariance link function. Here, we build the matrices such that observations
within the same subsample are correlated, and observations taken on the same plot are also
correlated.
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We now form two estimating equations, namely a quasi-score function for the regression
parameters, ψβ(β, τ ) = d

dβµ
>Σ−1(y−µ), and a Pearson estimating function for the dispersion

parameters, ψτ (β, τ ) = tr
{
−∂Σ−1

∂τ

(
(y − µ)>(y − µ)−Σ

)}
. The asymptotic distribution of

the joint solution θ̂ = (β̂, τ̂ )> is N(θ, J−1θ ), where J−1θ is the inverse of the Godambe infor-
mation matrix J−1θ = S−1θ Vθ(S−1θ )>, with Sθ and Vθ the sensitivity and variability matrices,
respectively.

Bonat and Jørgensen (2016) devise a modified Chaser algorithm to estimate the parameters,
giving iterative updates as

β(i+1) = β(i) − S−1β ψβ(β(i), τ (i))

τ (i+1) = τ (i) − αS−1τ ψτ (β(i+1), τ (i)),

where α a tuning parameter. This is implemented in the R package mcglm (Bonat, 2017).

Results and Discussion

Using both approaches, we fitted the model considering all effects described above and nested
sub-models, removing covariates from the mean and/or dispersion parameters, as well as random
effects/covariance parameters. We compared the fitted models using the AIC (for the conditional
approach) and the pseudo AIC, based on the Gaussian pseudo-log-likelihood (for the marginal
approach).

Looking at the AIC and pseudo AIC values (see Table 1), for both modelling approaches
model M6 is selected, i.e., different intercepts and slopes over height per treatment are included
in both the linear predictors for the mean and dispersion. Moreover, all covariance parameters
are included except the covariance between all observations taken on the same plot, which is
the plot random effect for the conditional modelling approach.

Table 1: Specification of seven different models, fitted using both the conditional and marginal
approaches, relating to the inclusion of different intercepts and slopes over height per treatment
in the mean (µ) and dispersion (φ) parameters, with corresponding AIC and pseudo AIC values

Model
Covariates Variance components Conditional Marginal
µ φ σ21/τ6 σ22/τ7 σ23/τ8 σ23/τ9 AIC pAIC1

M1 × × × × × × −701.27 −159.36
M2 yes × × × × × −875.78 −398.66
M3 yes × × yes yes yes −1188.09 −751.62
M4 yes × yes yes yes yes −1187.53 −751.20
M5 yes yes × × × × −918.38 −451.20
M6 yes yes × yes yes yes −1231.05 −768.94
M7 yes yes yes yes yes yes −1230.48 −768.38
1pseudo AIC

We note that the proportion of light intercepted by the canopy gets smaller as the height
increases (see Figure 1). Patches with a higher number of species intercept more light, giving
evidence that higher tree diversity promotes more light interception and therefore makes it
more likely for systems to be self-sustainable. Additionally, the variability increases over height
and is smaller for patches with higher diversity (see the estimates for the dispersion parameter
covariates, Table 2), giving evidence of a niche complementarity effect.

The two modelling strategies considered here provided the same qualitative answers to the
research questions. However, the interpretation of the covariance parameters is different, and
this is due to model formulation. It is computationally faster to fit the marginal models,
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Figure 1: Light interception data: observed responses (grey points), means (blue points), fitted
curves (black lines) and confidence intervals (blue shaded) estimated by the conditional model,
for each treatment (number of species).

Table 2: Parameter estimates for intercepts and slopes for the mean parameter (β) for the
conditional and marginal models, and dispersion parameter (γ) and variance components for
the conditional model and covariance parameters (τ ) for the marginal model.

Parameter
Estimates

Parameter
Estimates

Conditional Marginal Conditional Marginal

β01 1.07 (0.15) 0.96 (0.13) γ01/τ0 2.55 (0.22) 0.07 (0.03)
β02 1.78 (0.14) 1.59 (0.15) γ02/τ1 3.12 (0.17) −0.01 (0.04)
β03 2.77 (0.14) 2.46 (0.19) γ03/τ2 3.93 (0.23) −0.04 (0.04)
β11 −0.18 (0.05) −0.16 (0.04) γ11/τ3 −0.14 (0.09) 0.01 (0.00)
β12 −0.08 (0.04) −0.08 (0.05) γ12/τ4 −0.06 (0.06) −0.01 (0.02)
β13 −0.21 (0.05) −0.20 (0.06) γ13/τ5 −0.40 (0.10) 0.00 (0.02)

σ22/τ7 0.76 (0.12) 0.12 (0.02)
σ23/τ8 0.07 (0.01) 0.01 (0.00)
ρ23/τ9 −0.39 (0.10) −0.01 (0.01)

because there is no need to approximate the high-dimensional integrals in the likelihood function.
However, since the model is defined by using first and second moment assumptions, there is no
corresponding probability distribution and how to carry out simulation studies here is subject
of ongoing research. Further work also includes optimization of the code written for fitting the
conditional models, and further exploration of the behaviour of both modelling approaches.
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