
Phylogenetic Models of Language Change:
Validating Interference and Quantifying Uncertainty

Robin J. Ryder

Centre de Recherche en Mathématiques de la Décision
Université Paris-Dauphine

4 October 2019
Statistics in historical corpus linguistics, Maynooth University

Based on work with Geoff Nicholls and with Guillaume Jacques, Laurent Sagart, Yunfan Lai, Valentin Thouzeau, Simon
Greenhill and Mattis List

R. Ryder (Paris-Dauphine) Language phylogenies: validation, uncertainty Maynooth 04/10/19 1 / 77



What to remember

For a statistical analysis to be trustworthy, it needs to include:
A measure of uncertainty
A validation of the inference procedure
“All models are wrong, but some are useful.”
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Introduction

A large number of recent papers describe computationally-intensive
statistical methods for Historical Linguistics

Increased computational power
Advances in statistical methodology
New datasets
Complex linguistic questions which cannot be answered with
traditional methods
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Caveats

I am not a linguist
I am a statistician
Some of these papers were not written by me; figures were
created by the papers’ authors
I use the word "evolution" in a broad sense
"All models are wrong, but some are useful"
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Aims of this talk

Review of several recent papers on statistical models for Historical
Linguistics
Walk through statistical methodology
Statisticians won’t replace linguists
When done correctly, collaborations between statisticians and
linguists can provide useful results
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Advantages of statistical methods

Analyse (very) large datasets
Test multiple hypotheses
Cross-validation
Estimate uncertainty
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Languages diversify

Languages “evolve” similarly to biologically species
Similarities between languages indicate they may be cousins
Most standard model: tree
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Questions of interest

Which languages are related?
Given a set of related languages, can we reconstruct their history
and the age of the most recent common ancestor (MRCA)?
What mechanisms drive language change?
How do the various parts of language change? Vocabulary,
syntax, phonetics...
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Why be Bayesian?

In the settings described in this talk, it usually makes sense to use
Bayesian inference, because:

The models are complex
Estimating uncertainty is paramount
The data are not "big"
Some prior information is available
The output of one model is used as the input of another
We are interested in complex functions of our parameters
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Bayesian statistics

Statistical inference deals with estimating an unknown parameter
θ given some data D.
In the Bayesian framework, the parameter θ is seen as inherently
random: it has a distribution.
Before I see any data, I have a prior distribution on π(θ), usually
uninformative.
Once I take the data into account (through the likelihood function
L), I get a posterior distribution, which is hopefully more
informative.

π(θ∣D) ∝ π(θ)L(θ∣D)

Different people have different priors, hence different posteriors.
But with enough data, the choice of prior matters little.
We are allowed to make probability statements about θ, such as
"there is a 95% probability that θ belongs to the interval
[78 ; 119]" (credible interval)
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Bayes factors

Two modelsM1 andM2 can be compared using a Bayes factor.
Compute the marginal likelihood:

m1(D) = ∫ L1(θ1; D)π1(θ1)dθ1

and m2(D) similarly. Then

BF12(D) =
m1(D)

m2(D)

Usually interpreted on the log scale: if log BF > 2, decisive evidence in
favour of model 1; if log BF < −2, decisive evidence in favour of model
2; between −2 and 2, weaker evidence.

Includes a natural penalty of more complex models.
Treats models symmetrically (no "null" hypothesis)
Related to the BIC (Bayesian Information Criterion)
Can be long and painful to compute
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Advantages and drawbacks of Bayesian statistics

More intuitive interpretation of the results
Easier to think about uncertainty
In a hierarchical setting, it becomes easier to take into account all
the sources of variability
Prior specification: need to check that changing your prior does
not change your result
Computationally intensive
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Statistical method in a nutshell

1 Collect data
2 Design model
3 Perform inference (MCMC, ...)
7 Conclude
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Statistical method in a nutshell

1 Collect data
2 Design model
3 Perform inference (MCMC, ...)
4 Check convergence
5 In-model validation (is our inference method able to answer

questions from our model?)
6 Model mis-specification analysis (do we need a more complex

model?)
7 Conclude

In general, it is more difficult to perform inference for a more complex
model.
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2 Gray & Atkinson: Language phylogenies
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Swadesh (1952)

LEXICO-STATISTIC DATING OF PREHISTORIC ETHNIC CONTACTS 

With Special Reference to North American Indians and Eskimos 

MORRIS SWADESH 

PREHISTORY refers to the long period of early 
human society before writing was available for the 
recording of events. In a few places it gives way 
to the modern epoch of recorded history as much 
as six or eight thousand years ago; in many areas 
this happened only in the last few centuries. 
Everywhere prehistory represents a great obscure 
depth which science seeks to penetrate. And in- 
deed powerful means have been found for illumi- 
nating the unrecorded past, including the evidence 
of archeological finds and that of the geographic 
distribution of cultural facts in the earliest known 
periods. Much depends on the painstaking analy- 
sis and comparison of data, and on the effective 
reading of their implications. Very important is 
the combined use of all the evidence, linguistic and 
ethnographic as well as archeological, biological, 
and geological. And it is essential constantly to 
seek new means of expanding and rendering more 
accurate our deductions about prehistory. 

One of the most significant recent trends in the 
field of prehistory has been the development of ob- 
jective methods for measuring elapsed time. 
Where vague estimates and subjective judgments 
formerly had to serve, today we are often able to 
determine prehistoric time within a relatively nar- 
row margin of accuracy. This development is im- 
portant especially because it adds greatly to the 
possibility of interrelating the separate reconstruc- 
tions. 

Unquestionably of the highest value has been the 
development of radiocarbon dating.' This tech- 
nique is based on W. F. Libby's discovery that all 
living substances contain a certain percentage of 
radioactive carbon, an unstable substance which 
tends to change into nitrogen. During the life of 
a plant or animal, new radiocarbon is continually 
taken in from the atmosphere and the percentage 
remains at a constant level. After death the per- 
centage of radiocarbon is gradually dissipated at 
an essentially constant statistical rate. The rate of 
"decay" being constant, it is possible to determine 
the time since death of any piece of carbon by 

1 See Radiocarbon dating, assembled by Frederick 
Johnson, Mein. Soc. Amner. Archacol. 8, 1951. 

measuring the amount of radioactivity still going 
on. Consequently, it is possible to determine 
within certain limits of accuracy the time depth of 
any archeological site which contains a suitable bit 
of bone, wood, grass, or any other organic sub- 
stance. 

Lexicostatistic dating makes use of very dif- 
ferent material from carbon dating, but the broad 
theoretical prin~iple is similar. Researches by the 
present author and several other scholars within 
the last few years have revealed that the funda- 
mental everyday vocabulary of any language-as 
against the specialized or "cultural" vocabulary- 
changes at a relatively constant rate. The per- 
centage of retained elements in a suitable test 
vocabulary therefore indicates the elapsed time. 
Wherever a speech community comes to be divided 
into two or more parts so that linguistic change 
goes separate ways in each of the new speech com- 
munities, the percentage of common retained vo- 
cabulary gives an index of the amount of time that 
has elapsed since the separation. Consequently, 
wherever we find two languages which can b)e 
shown by comparative linguistics to be the end 
products of such a divergence in the prehistoric 
past, we are alble to determine when the first 
separation took place. Before taking up the de- 
tails of the method, let us examine a concrete il- 
lustrative instance. 

The Eskimo and Aleut languages are by no 
means the same. An Eskimo cannot understand 
Aleut unless he learns the language like any other 
foreign tongue, except that structural similarities 
and occasional vocabulary agreements make the 
learning a little easier than it might otherwise be. 
The situation is roughly comparable to that of an 
English-speaking person learning Gaelic or 1 ithu- 
anian. It has been shown that Eskimo and Aleut 
are modern divergent forms of an earlier single 
language." In other words, the similarities be- 

- Concrete proof of this relationship has recently been 
presented in two independent studies: Knut Bergslund, 
Kleinschmidt Centennial IV: Aleut demonstratives and 
the Aleut-Eskimo relationship, InternatI. Joulr. ,Aizcr. 
Ling. 17: 167-179, 1951: Gordon Marsh and Morris 

PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY, VOL. 96, No. 4, AUGU ST, 1952 
452 
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First attempt: Swadesh (1952)

Aim: dating the MRCA (Most Recent Common Ancestor) of a pair of
languages.
Data: "core vocabulary" (Swadesh lists). 215 or 100 words.
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Core vocabulary
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Assumptions

Swadesh assumed that core vocabulary evolves at a constant rate
(through time, space and meanings). Given a pair of languages with
percentage C of shared cognates, and a constant retention rate r , the
age t of the MRCA is

t =
log C
2 log r

The constant r was estimated using a pair of languages for which the
age of the MRCA is known.
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Issues with glottochronology

Many statistical shortcomings. Mainly:
1 Simplistic model
2 No evaluation of uncertainty of estimates
3 Only small amounts of data are used

Bergsland and Vogt (1962) debunked glottochronology, showing on 3
pairs of languages with known history that the assumption of constant
rates does not hold.
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What has changed?

More elaborate models + model misspecification analyses
We can estimate the uncertainty (⇒easier to answer "I don’t
know")
Large amounts of data
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Gray & Atkinson (2003)

reanneal. Although our model simulations do not include calcu-
lations past the fragmentation threshold, we propose that a local
decrease in shear-strain rates associated with fragmentation may
promote reannealing28. Furthermore, it seems reasonable to assume
that shear-induced fragmentation has a marked effect on the flow of
the ascending magma and that upon continued ascent, fragments
from different parts of the ascending magma may become juxta-
posed. If the magma is texturally heterogeneous, which in itself may
be a consequence of repeated cycles of fragmentation, flow defor-
mation and reannealing, fragments can become elongated into
bands10 (Fig. 1). Minimum strain estimates to produce milli-
metre-size bands from decimetre-size fragments is of the order of
100. Using d as an estimate of the length scale for shear, this
corresponds to an ascent distance, Dz < ġRd, of the order of
10 m. We propose that the long-standing enigma of pervasive flow
banding of silicic magmas may in some cases be viewed as a record
of fragmentation and reannealing during magma ascent, in much
the same way as banding can be made by fragmentation and
reannealing in flows29. In addition, we expect that shear-induced
fragmentation can, to some degree, replace viscous deformation as
the mode of shear along conduit walls, thereby reducing the
exceedingly large dynamic pressures required to erupt highly
crystalline silicic magmas. However, none of our model simulations
explicitly include the effect of crystals on fragmentation30.

Our prediction that shear-induced fragmentation occurs in both
explosive and effusive silicic volcanism is consistent with the
observed conditions of volcanic systems22 (Fig. 3), with the degassed
nature of effusive silicic lavas7,8, and with textural observations at
the outcrop scale down to the microscale9–11 (Fig. 1). As opposed to
the common view that explosive volcanism “is defined as involving
fragmentation of magma during ascent”1, we conclude that frag-
mentation may play an equally important role in reducing the
likelihood of explosive behaviour, by facilitating magma degassing.
Because shear-induced fragmentation depends so strongly on the
rheology of the ascending magma, our findings are in a broader
sense equivalent to Eichelberger’s hypothesis1 that “higher viscosity
of magma may favour non-explosive degassing rather than
hinder it”, albeit with the added complexity of shear-induced
fragmentation. A

Received 19 May; accepted 15 November 2003; doi:10.1038/nature02138.

1. Eichelberger, J. C. Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu. Rev.

Earth Planet. Sci. 23, 41–63 (1995).

2. Dingwell, D. B. Volcanic dilemma: Flow or blow? Science 273, 1054–1055 (1996).

3. Papale, P. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428 (1999).

4. Dingwell, D. B. & Webb, S. L. Structural relaxation in silicate melts and non-Newtonian melt rheology

in geologic processes. Phys. Chem. Miner. 16, 508–516 (1989).

5. Webb, S. L. & Dingwell, D. B. The onset of non-Newtonian rheology of silcate melts. Phys. Chem.

Miner. 17, 125–132 (1990).

6. Webb, S. L. & Dingwell, D. B. Non-Newtonian rheology of igneous melts at high stresses and strain

rates: experimental results for rhyolite, andesite, basalt, and nephelinite. J. Geophys. Res. 95,

15695–15701 (1990).

7. Newman, S., Epstein, S. & Stolper, E. Water, carbon dioxide and hydrogen isotopes in glasses from the

ca. 1340 A.D. eruption of the Mono Craters, California: Constraints on degassing phenomena and

initial volatile content. J. Volcanol. Geotherm. Res. 35, 75–96 (1988).

8. Villemant, B. & Boudon, G. Transition from dome-forming to plinian eruptive styles controlled by

H2O and Cl degassing. Nature 392, 65–69 (1998).

9. Polacci, M., Papale, P. & Rosi, M. Textural heterogeneities in pumices from the climactic eruption of

Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull. Volcanol. 63,

83–97 (2001).

10. Tuffen, H., Dingwell, D. B. & Pinkerton, H. Repeated fracture and healing of silicic magma generates

flow banding and earthquakes? Geology 31, 1089–1092 (2003).

11. Stasiuk, M. V. et al. Degassing during magma ascent in the Mule Creek vent (USA). Bull. Volcanol. 58,

117–130 (1996).

12. Goto, A. A new model for volcanic earthquake at Unzen Volcano: Melt rupture model. Geophys. Res.

Lett. 26, 2541–2544 (1999).

13. Mastin, L. G. Insights into volcanic conduit flow from an open-source numerical model. Geochem.

Geophys. Geosyst. 3, doi:10.1029/2001GC000192 (2002).

14. Proussevitch, A. A., Sahagian, D. L. & Anderson, A. T. Dynamics of diffusive bubble growth in

magmas: Isothermal case. J. Geophys. Res. 3, 22283–22307 (1993).

15. Lensky, N. G., Lyakhovsky, V. & Navon, O. Radial variations of melt viscosity around growing bubbles

and gas overpressure in vesiculating magmas. Earth Planet. Sci. Lett. 186, 1–6 (2001).

16. Rust, A. C. & Manga, M. Effects of bubble deformation on the viscosity of dilute suspensions.

J. Non-Newtonian Fluid Mech. 104, 53–63 (2002).

17. Pal, R. Rheological behavior of bubble-bearing magmas. Earth Planet. Sci. Lett. 207, 165–179 (2003).

18. Llewellin, E. W., Mader, H. M. & Wilson, S. D. R. The constitutive equation and flow dynamics of

bubbly magmas. Geophys. Res. Lett. 29, doi:10.1029/2002GL015697 (2002).

19. Simmons, J. H., Mohr, R. K. & Montrose, C. J. Non-Newtonian viscous flow in glass. J. Appl. Phys. 53,

4075–4080 (1982).

20. Hess, K.-U. & Dingwell, D. B. Viscosities of hydrous leucogranitic melts: A non-Arrhenian model. Am.

Mineral. 81, 1297–1300 (1996).

21. Manga, M. & Loewenberg, M. Viscosity of magmas containing highly deformable bubbles. J. Volcanol.

Geotherm. Res. 105, 19–24 (2001).

22. Pyle, D. M. in Encyclopedia of Volcanoes (eds Sigurdsson, H., Houghton, B. F., McNutt, S. R., Rymer, H.

& Stix, J.) 263–269 (Academic, San Diego, 2000).

23. Jaupart, C. & Allegre, C. J. Gas content, eruption rate and instabilities of eruption regime in silicic

volcanoes. Earth Planet. Sci. Lett. 102, 413–429 (1991).

24. Boudon, G., Villemant, B., Komorowski, J.-C., Ildefonse, P. & Semet, M. P. The hydrothermal system

at Soufriere Hills volcano, Montserrat (West Indies): characterization and role in the on-going

eruption. Geophys. Res. Lett. 25, 3693–3696 (1998).

25. Blower, J. D. Factors controlling porosity-permeability relationships in magma. Bull. Volcanol. 63,

497–504 (2001).

26. Klug, C. & Cashman, K. V. Permeability development in vesiculating magmas: implications for

fragmentation. Bull. Volcanol. 58, 87–100 (1996).

27. Klug, C., Cashman, K. V. & Bacon, C. R. Structure and physical characteristics of pumice from the

climactic eruption of Mount Mazama (Crater Lake), Oregon. Bull. Volcanol. 64, 486–501 (2002).

28. Gottsmann, J. & Dingwell, D. B. The thermal history of a spatter-fed lava flow: the 8-ka pantellerite

flow of Mayor Island, New Zealand. Bull. Volcanol. 64, 410–422 (2002).

29. Smith, J. V. Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern

Australia. J. Volcanol. Geotherm. Res. 72, 217–223 (1996).

30. Martel, C., Dingwell, D. B., Spieler, O., Pichavant, M. & Wilke, M. Experimental fragmentation of

crystal- and vesicle-bearing melts. Bull. Volcanol. 63, 398–405 (2001).

Acknowledgements We thank P. Papale and D. L. Sahagian for comments on the previous

versions of the manuscript, and K. V. Cashman, A. Rust, and A. M. Jellinek for comments on

earlier versions. This work was supported by the National Science Foundation and the Sloan

Foundation.

Competing interests statement The authors declare that they have no competing financial

interests.

Correspondence and requests for materials should be addressed to H.M.G.

(hmg@seismo.berkeley.edu).

..............................................................

Language-tree divergence times
support the Anatolian theory
of Indo-European origin
Russell D. Gray & Quentin D. Atkinson

Department of Psychology, University of Auckland, Private Bag 92019,
Auckland 1020, New Zealand
.............................................................................................................................................................................

Languages, like genes, provide vital clues about human history1,2.
The origin of the Indo-European language family is “the most
intensively studied, yet still most recalcitrant, problem of his-
torical linguistics”3. Numerous genetic studies of Indo-European
origins have also produced inconclusive results4,5,6. Here we
analyse linguistic data using computational methods derived
from evolutionary biology. We test two theories of Indo-
European origin: the ‘Kurgan expansion’ and the ‘Anatolian
farming’ hypotheses. The Kurgan theory centres on possible
archaeological evidence for an expansion into Europe and the
Near East by Kurgan horsemen beginning in the sixth millen-
nium BP

7,8. In contrast, the Anatolian theory claims that Indo-
European languages expanded with the spread of agriculture
from Anatolia around 8,000–9,500 years BP

9. In striking agree-
ment with the Anatolian hypothesis, our analysis of a matrix of
87 languages with 2,449 lexical items produced an estimated age
range for the initial Indo-European divergence of between 7,800
and 9,800 years BP. These results were robust to changes in coding
procedures, calibration points, rooting of the trees and priors in
the bayesian analysis.

letters to nature

NATURE | VOL 426 | 27 NOVEMBER 2003 | www.nature.com/nature 435© 2003        Nature  Publishing Group
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Swadesh lists, better analysed

Use Swadesh lists for 87 Indo-European languages, and a
phylogenetic model from Genetics
Assume a tree-like model of evolution with constant rate of change
Bayesian inference via MCMC (Markov Chain Monte Carlo)
Reconstruct trees and dates
Main parameter of interest: age of the root (Proto-Indo-European,
PIE)
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Lexical trees
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Correcting the issues with glottochronology

Returning to the issues with Swadesh’s glottochronology:
1 Simplistic model → Slightly better, but the model of evolution is

rudimentary
2 No evaluation of uncertainty of estimates → Bayesian inference
3 Only small amounts of data are used → Large number of

languages reduces variability of estimates
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Bayesian inference for lexical trees

The tree parameter is seen as random: it has a distribution
Via MCMC, G & A get a sample of possible trees, with associated
probabilities, rather than a single tree
The uncertainty in trees is thus made explicit
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G & A: conclusions

Age of PIE: 7800-9800 BP (Before Present)
Large error bars, but this is a good thing
Reconstruct many known features of the tree of Indo-European
languages
Little validation of the model, no model misspecification analysis
These trees can also be used as a building block to answer other
questions.
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Pagel et al. (2007)

LETTERS

Frequency of word-use predicts rates of lexical
evolution throughout Indo-European history
Mark Pagel1,2, Quentin D. Atkinson1 & Andrew Meade1

Greek speakers say ‘‘ourá’’, Germans ‘‘schwanz’’ and the French
‘‘queue’’ to describe what English speakers call a ‘tail’, but all of
these languages use a related form of ‘two’ to describe the number
after one. Among more than 100 Indo-European languages and
dialects, the words for some meanings (such as ‘tail’) evolve
rapidly, being expressed across languages by dozens of unrelated
words, while others evolve much more slowly—such as the num-
ber ‘two’, for which all Indo-European language speakers use the
same related word-form1. No general linguistic mechanism has
been advanced to explain this striking variation in rates of lexical
replacement among meanings. Here we use four large and diver-
gent language corpora (English2, Spanish3, Russian4 and Greek5)
and a comparative database of 200 fundamental vocabulary mean-
ings in 87 Indo-European languages6 to show that the frequency
with which these words are used in modern language predicts their
rate of replacement over thousands of years of Indo-European
language evolution. Across all 200 meanings, frequently used
words evolve at slower rates and infrequently used words evolve
more rapidly. This relationship holds separately and identically
across parts of speech for each of the four language corpora, and
accounts for approximately 50% of the variation in historical rates
of lexical replacement. We propose that the frequency with which
specific words are used in everyday language exerts a general and
law-like influence on their rates of evolution. Our findings are
consistent with social models of word change that emphasize the
role of selection, and suggest that owing to the ways that humans
use language, some words will evolve slowly and others rapidly
across all languages.

Languages, like species, evolve by way of a process of descent with
modification (Supplementary Table 1). The remarkable diversity of
languages—there are about 7,000 known living languages7—is a
product of this process acting over thousands of years. Ancestral
languages split to form daughter languages that slowly diverge as
shared lexical, phonological and grammatical features are replaced
by novel forms. In the study of lexical change, the basic unit of
analysis is the cognate. Cognates are words of similar meaning with
systematic sound correspondences indicating they are related by
common ancestry. For example, cognates meaning ‘water’ exist in
English (water), German (wasser), Swedish (vatten) and Gothic
(wato), reflecting descent from proto-Germanic (*water).

Early lexicostatistical8 studies of Malayo-Polynesian and Indo-
European language families revealed that the rate at which new
cognates arise varies across meaning categories1,9. More recently we
have obtained direct estimates of rates of cognate replacement on
linguistic phylogenies (family trees) of Indo-European and Bantu
languages, using a statistical model of word evolution in a bayesian
Markov chain Monte Carlo (MCMC) framework10. We found that
rates of cognate replacement varied among meanings, and that rates
for different meanings in Indo-European were correlated with their

paired meanings in the Bantu languages. This indicates that variation
in the rates of lexical replacement among meanings is not merely an
historical accident, but rather is linked to some general process of
language evolution.

Social and demographic factors proposed to affect rates of
language change within populations of speakers include social status11,
the strength of social ties12, the size of the population13 and levels of
outside contact14. These forces may influence rates of evolution on a
local and temporally specific scale, but they do not make general
predictions across language families about differences in the rate of
lexical replacement among meanings. Drawing on concepts from
theories of molecular15 and cultural evolution16–18, we suggest that
the frequency with which different meanings are used in everyday
language may affect the rate at which new words arise and become
adopted in populations of speakers. If frequency of meaning-use is
a shared and stable feature of human languages, then this could
provide a general mechanism to explain the large differences across
meanings in observed rates of lexical replacement. Here we test this
idea by examining the relationship between the rates at which Indo-
European language speakers adopt new words for a given meaning
and the frequency with which those meanings are used in everyday
language.

We estimated the rates of lexical evolution for 200 fundamental
vocabulary meanings8 in 87 Indo-European languages6. Rates were
estimated using a statistical likelihood model of word evolution10

applied to phylogenetic trees of the 87 languages (Supplementary
Fig. 1). The number of cognates observed per meaning varied from
one to forty-six. For each of the 200 meanings, we calculated the
mean of the posterior distribution of rates as derived from a bayesian
MCMC model that simultaneously accounts for uncertainty in the
parameters of the model of cognate replacement and in the phylo-
genetic tree of the languages (Methods). Rate estimates were scaled
to represent the expected number of cognate replacements per
10,000 years, assuming a 8,700-year age for the Indo-European lan-
guage family6. Opinions on the age of Indo-European vary between
approximately 6,000 and 10,000 years before present19,20. Using a
different calibration would change the absolute values of the rates
but not their relative values.

Figure 1a shows the inferred distribution of rate estimates, where
we observe a roughly 100-fold variation in rates of lexical evolution
among the meanings. At the slow end of the distribution, the rates
predict zero to one cognate replacements per 10,000 years for words
such as ‘two’, ‘who’, ‘tongue’, ‘night’, ‘one’ and ‘to die’. By compa-
rison, for the faster evolving words such as ‘dirty’, ‘to turn’, ‘to stab’
and ‘guts’, we predict up to nine cognate replacements in the same
time period. In the historical context of the Indo-European language
family, this range yields an expectation of between 0–1 and 43 lexical
replacements throughout the ,130,000 language-years of evolution
the linguistic tree represents, very close to the observed range in the

1School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AS, UK. 2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.

Vol 449 | 11 October 2007 | doi:10.1038/nature06176

717
Nature   ©2007 Publishing Group
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Question at hand

Check link between frequency of use and rate of change for
vocabulary.
Hypothesis: when a meaning is used more often, the
corresponding word has less chances of changing.
Problem: since this rate is expected to be very slow, we need to
look at the deep history. But then the evolutionary history is
unknown.
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Workaround

Use Indo-European core vocabulary data, and frequencies from
English, Greek, Russian and Spanish
Get a sample from the distribution on trees and ancestral ages
using G&A’s method
For each tree in the sample, estimate the rate of change for each
meaning.
Average across all trees.
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Results

(The different colours correspond to different classes of words:
numerals, body parts, adjectives...)
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Comments

There is significant (negative) correlation between frequency of
use and rate of change.
Even if there is high uncertainty in the phylogenies, we can still
answer other questions (integrating out the tree)
Similar results for Bantu (Pagel & Meade 2006)
It would have been much harder to evaluate this hypothesis
without the Bayesian paradigm.
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Outline

1 Swadesh: Glottochronology

2 Gray & Atkinson: Language phylogenies

3 Pagel et al.: Frequency of use

4 Sagart et al.: Sino-Tibetan phylogenies

5 Re-examining Bergsland and Vogt

6 Conclusions
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Sagart et al. (2019)
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Sino-Tibetan languages
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Example of a (consensus) tree
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Questions to answer

Topology of the tree: subfamilies and their links
Age of ancestor nodes
Age of root
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Swadesh lists

100 or 200 words, present in almost all languages: bird, hand, to
eat, red...
Cognacy judgments performed by experts
"Obvious" borrowings removed

Data are transformed to a binary matrix. This observation process is
the first aspect we need to model.
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Binary data: he dies, three, all (data: Ringe et al. ’02)

he dies three all
Old English stierfþ þrı̄e ealle

Old High German stirbit, touwit drı̄ alle
Avestan miriiete þrāiiō vispe

Old Church Slavonic umı̆retŭ trı̆je vı̆si
Latin moritur trēs omnēs

Oscan ? trís súllus

Cognacy classes (traits) for the
meaning he dies:
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Binary data: he dies, three, all (data: Ringe et al. ’02)

he dies three all
Old English stierfþ þrı̄e ealle

Old High German stirbit, touwit drı̄ alle
Avestan miriiete þrāiiō vispe

Old Church Slavonic umı̆retŭ trı̆je vı̆si
Latin moritur trēs omnēs

Oscan ? trís súllus

Cognacy classes (traits) for the
meaning he dies:

1 {stierfþ, stirbit}
2 {touwit}
3 {miriiete, umı̆retŭ, moritur}
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Binary data: he dies, three, all (data: Ringe et al. ’02)

he dies three all
Old English stierfþ þrı̄e ealle

Old High German stirbit, touwit drı̄ alle
Avestan miriiete þrāiiō vispe

Old Church Slavonic umı̆retŭ trı̆je vı̆si
Latin moritur trēs omnēs

Oscan ? trís súllus

O. English 1 0 0
OH German 1 1 0

Avestan 0 0 1
OC Slavonic 0 0 1

Latin 0 0 1
Oscan ? ? ?

Cognacy classes (traits) for the
meaning he dies:

1 {stierfþ, stirbit}
2 {touwit}
3 {miriiete, umı̆retŭ, moritur}
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Binary data: he dies, three, all (data: Ringe et al. ’02)

he dies three all
Old English stierfþ þrı̄e ealle

Old High German stirbit, touwit drı̄ alle
Avestan miriiete þrāiiō vispe

Old Church Slavonic umı̆retŭ trı̆je vı̆si
Latin moritur trēs omnēs

Oscan ? trís súllus

O. English 1 0 0 1
OH German 1 1 0 1

Avestan 0 0 1 1
OC Slavonic 0 0 1 1

Latin 0 0 1 1
Oscan ? ? ? 1

Cognacy classes for
the meaning three:

1 {þrı̄e, drı̄,þrāiiō, trı̆je, trēs, trís}
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Binary data: he dies, three, all (data: Ringe et al. ’02)

he dies three all
Old English stierfþ þrı̄e ealle

Old High German stirbit, touwit drı̄ alle
Avestan miriiete þrāiiō vispe

Old Church Slavonic umı̆retŭ trı̆je vı̆si
Latin moritur trēs omnēs

Oscan ? trís súllus

O. English 1 0 0 1 1 0 0 0
OH German 1 1 0 1 1 0 0 0

Avestan 0 0 1 1 0 1 0 0
OC Slavonic 0 0 1 1 0 1 0 0

Latin 0 0 1 1 0 0 1 0
Oscan ? ? ? 1 0 0 0 1

Cognacy classes
for all :

1 {ealle, alle}
2 {vispe, vı̆si}
3 {omnēs}
4 {súllus}
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Final data

Old English 1 0 0 1 1 0 0 0
Old High German 1 1 0 1 1 0 0 0

Avestan 0 0 1 1 0 1 0 0
Old Church Slavonic 0 0 1 1 0 1 0 0

Latin 0 0 1 1 0 0 1 0
Oscan ? ? ? 1 0 0 0 1
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Constraints

Constraints on the tree topology
Constraints on the age of some nodes or ancient languages
These constraints are used to estimate the evolution rates and the
age.
Also provide one way of validating the model and inference
procedure.
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Model (1): birth-death process

Traits (=cognacy
classes) are born at
rate λ.
Traits die at rate µ.
λ and µ are constant.

1 1 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 1 0 0 0 0 0 0 1
4 0 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0 0
6 1 1 0 0 0 1 1 0
7 1 1 0 0 0 1 0 0
8 1 0 0 0 0 0 0 0
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Statistical method in a nutshell

1 Collect data
2 Design model
3 Perform inference (MCMC, ...)
4 Check convergence
5 In-model validation (is our inference method able to answer

questions from our model?)
6 Model mis-specification analysis (do we need a more complex

model?)
7 Conclude

In general, it is more difficult to perform inference for a more complex
model.
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Limitations of this model

1 Constant rates across time and space
2 No handling of missing data
3 No handling of borrowing
4 Treats all traits in the same fashion
5 Binary coding loses part of the structure
6 Assumes a tree structure
7 ...

Do any of these limitations introduce systematic bias? (Answer: YES,
some do.)
Check each misspecification in turn, and adapt the model if necessary.
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1 Constant rates across time and space
2 No handling of missing data
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4 Treats all traits in the same fashion
5 Binary coding loses part of the structure
6 Assumes a tree structure
7 ...

Do any of these limitations introduce systematic bias?

(Answer: YES,
some do.)
Check each misspecification in turn, and adapt the model if necessary.
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1 Constant rates across time and space
2 No handling of missing data
3 No handling of borrowing
4 Treats all traits in the same fashion
5 Binary coding loses part of the structure
6 Assumes a tree structure
7 ...

Do any of these limitations introduce systematic bias? (Answer: YES,
some do.)
Check each misspecification in turn, and adapt the model if necessary.
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How to check for misspecifications

1 Compute the Bayes factor to choose between two modelsM1 and
M2 (gold standard, but often mathematically challenging and
computationally demanding)

2 If a misspecification can be represented by a single estimable
parameter θ, estimate it and check whether θ = 0

3 Perform a simulation study: synthesize data from the complex
model, infer parameters using the simple model, and check
whether we are able to reconstruct the "truth"

4 If for some reason two reasonable models cannot be compared
using the above: infer under both, and see where the output
agrees.

R. Ryder (Paris-Dauphine) Language phylogenies: validation, uncertainty Maynooth 04/10/19 46 / 77



Model (2): catastrophic rate heterogeneity

Catastrophes occur at rate ρ
At a catastrophe, each trait dies
with probability κ and
Pbetoiss(ν) traits are born.
λ/µ = ν/κ : the number of traits
is constant on average.
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 1 1 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 1 1 0 0 0 0 0 1 0
7 1 0 0 0 0 1 0 0 0 0 0 0 1 0
8 1 0 0 0 0 0 0 0 0 0 0 0 1 0
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Influence of catastrophes

Checks 2 and 4:
Estimate the number of catastrophes: posterior distribution is
between 0 and 2, with ρ close to 0.
Infer with and without catastrophes: here we get essentially the
same distribution for the parameters of interest (topology, ages)

Conclusion: we can ignore catastrophes. (As it turns out, we will need
another kind of rate heterogeneity.)
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Influence of missing data

Check 3:

If we simulate synthetic data with missing entries, replace those
with 0s, and infer the parameter values, we get biased results

Hence, we need to model missing data
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Model (3): missing data

Observation process: each
point goes missing with
probability ξi

Some traits are not observed
and are thinned out of the data

1 1 0 0 0 ? 0 0 0 0 0 ? 0 0 0
2 ? 0 1 0 0 0 ? 0 0 0 0 0 0 ?
3 0 ? 0 0 ? 0 0 0 0 1 1 0 0 0
4 0 0 0 0 ? 0 ? 0 0 0 0 ? 0 0
5 0 0 ? 0 1 ? 0 0 0 0 0 0 0 0
6 1 0 0 0 0 ? ? 0 ? 0 0 0 ? 0
7 ? 0 0 0 0 ? 0 ? 0 0 0 0 1 0
8 1 0 0 0 0 0 0 0 0 0 0 0 1 0
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Influence of missing data

Check 3: if we simulate synthetic data for which data go missing in
blocks, then infer using our simple model of missing data, we get no
bias.
Conclusion: this model of missing data is useful enough.

R. Ryder (Paris-Dauphine) Language phylogenies: validation, uncertainty Maynooth 04/10/19 51 / 77



Inference

BEAST and TraitLab software
Bayesian inference
Markov Chain Monte Carlo
(Almost) uniform prior over the age of the root
Extensive validation (in-model and out-model; real data and
synthetic data)
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Posterior distribution

p(g, µ, λ, κ, ρ, ξ∣D = D)
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Likelihood calculation

∑

ω∈Ω
(c)
a

P[M = ω∣Z = (ti ,c),g, µ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
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(c)
a ) ≥ 1
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(c)
a )Q(Ω

(c)
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(i.e. Ω
(c)
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⎧⎪⎪⎪⎪⎪
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⎪⎪⎪⎪⎪⎩
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(c)
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(i.e. Dc,a ∈ {?,1})
0 if Ω

(c)
a = {∅} (i.e. Dc,a = 0)
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Tests on synthetic data

Figure: True tree, 40
words/language Figure: Consensus tree

With in-model synthetic data, the tree is well reconstructed.
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Tests on synthetic data (2)

Figure: Death rate (µ)

(Not shown: other parameters are also well reconstructed.)
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Influence of borrowing (1)

Figure: True tree, 40
words/language, 10% borrowing Figure: Consensus tree

With out-of-model synthetic data with low levels of borrowing, the tree
is well reconstructed.
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Influence of borrowing (2)

Figure: True tree, 40
words/language, 50% borrowing Figure: Consensus tree
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Influence of borrowing (3)

The topology is well reconstructed
Dates are under-estimated if borrowing levels are high

Figure: Root age Figure: Death rate (µ)
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Borrowing: what to do?

High levels of undetected borrowing (or other non-treeness) would
introduce bias in our results.
Fortunately, Kelly & Nicholls (2017) provide a methodology to:

Essentially infer a network superimposed on a tree
Test for treeness (check 1)
Estimate levels of borrowing (allowing check 2 and check 3)

Here:
log Bayes factor is non-decisive at 1.8, indicating that including the
network does not improve the model fit
the level of borrowing is estimated at β̂/µ = 0.104, a level at which
we have no systematic bias with synthetic data

Analysis restricted to 15 languages (chosen randomly across
subfamilies) for computational reasons. Took 83 hours on 8 cores.
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Mis-specifications

Heterogeneity between traits Analyse subset of data+ sim-
ulated data

Heterogeneity in time/space
(non catastrophic)

Infer from 3 distinct models,
giving similar results

Borrowing Bayes factor + Simulated
data analysis + check level of
borrowing

Data missing in blocks Simulated data analysis
Non-empty meaning cate-
gories

Simulated data analysis

Heterogeneity across sub-
families

Analyse subset of the data

... ...
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Cross-validation

Final check: we can take out the age constraints one by one, and
check whether we are able to reconstruct them.
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Cross-validation

Final check: we can take out the age constraints one by one, and
check whether we are able to reconstruct them.
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MCMC output

See animation.
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Sino-Tibetan consensus tree
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Densitree
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Outline

1 Swadesh: Glottochronology

2 Gray & Atkinson: Language phylogenies

3 Pagel et al.: Frequency of use

4 Sagart et al.: Sino-Tibetan phylogenies

5 Re-examining Bergsland and Vogt

6 Conclusions

R. Ryder (Paris-Dauphine) Language phylogenies: validation, uncertainty Maynooth 04/10/19 66 / 77



Back to Bergsland and Vogt

Norse family, 8 languages
Selection bias
B&V claim that the rate of change is significantly different for these
data.
B&V included words used only in literary Icelandic, which we
exclude.
We can handle polymorphism.
Do not include rate heterogeneity (would be cheating!)
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Known history

Icelandic

Riksmal

Sandnes

Gjestal

X XI XII XIII
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Tests

Two possible ways to test whether the same model parameters apply
to this example and to Indo-European:

1 Assume parameters are the same as for the general
Indo-European tree, and estimate ancestral ages.

2 Use Norse constraints to estimate parameters, and compare to
parameter estimates from general Indo-European tree
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Results

If we use parameter values from another analysis, we can try to
estimate the age of 13th century Norse.
True constraint: 660–760 BP. Our HPD: 615 – 872 BP.
If we analyse the Norse data on its own, we estimate parameters.
Value of µ for Norse: 2.47 ± 0.4 ⋅ 10−4

Value of µ for IE: 1.86 ± 0.39 ⋅ 10−4 (Dyen et al.), 2.37 ± 0.21 ⋅ 10−4

(Ringe et al.)

R. Ryder (Paris-Dauphine) Language phylogenies: validation, uncertainty Maynooth 04/10/19 70 / 77



But...

We can also try to estimate the age of Icelandic (which is 0 BP)
Find 439–560 BP, far from the true value
B&V were right: there was significantly less change on the branch
leading to Icelandic than average
However, we are still able to estimate internal node ages.
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Georgian

Second data set: Georgian and Mingrelian
Age of ancestor: last millenium BC
Code data given by B&V, discarding borrowed items
Use rate estimate from analysis of Indo-European (Ringe et al.
data)

95% HPD: 2065 – 3170 BP
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Georgian
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B&V: conclusions

Third data set (Armenian) not clear enough to be recoded.
There is variation in the number of changes on an edge.
Nonetheless, we are still able to estimate ancestral language age.
Variation in borrowing rates
B& V: "we cannot estimate dates, and it follows that we cannot
estimate the topology either".
We can estimate dates, and even if we couldn’t, we might still be
able to estimate the topology.
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Overall conclusions

When done right, statistical methods can provide new insight into
linguistic history
Importance of collaboration in building the model and in checking
for mis-specification.
Bayesian statistics play a big role, for estimating uncertainty,
handling complex models and using analyses as building blocks
Accept and embrace the uncertainty
Major avenues for future research. Challenges in finding relevant
data, building models, and statistical inference:

Models for morphosyntactical traits
Putting together lexical, phonemic and morphosyntactic traits
Incorporate geography
...
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Questions

otázky kesses
spørgsmåler cwestiwnau

pytania preguntes
preguntas vrae
kláusimai Fragen
вопросы quaestiones
întrebări questions
vragen ερωτ ήσεις

запитаннi spurningar
domande spørsmåler
questões frågor
vprašanja
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