On how Descartes changed the meaning of the Pythagorean Theorem

Piotr Błaszczyk
Institute of Mathematics
Pedagogical University, Kraków, Poland

Maynooth, 2nd August 2019

Problem

$$
\square, \square=\square
$$

Euclid, Elements, I. 47

$$
a^{2}+b^{2}=c^{2}
$$

$a, b, c \in \mathbb{R}$
$\square, \square=\square$
$a^{2}+b^{2}=c^{2}$

Euclid's theory of equal figures
arithmetic of real numbers

The thesis

$$
\begin{aligned}
\square, \square & =\square \\
a^{2}+b^{2} & =c^{2} \\
a^{2}+b^{2} & =c^{2}
\end{aligned}
$$

Euclid's theory of equal figures Descartes' arithmetic of line segments arithmetic of real numbers

Elements, I. 47

"In right-angled triangles the square on ($\alpha \pi$ ó) the side subtending the right-angle is equal to the [sum of the] squares on ($\dot{\alpha} \pi o$) the sides surrounding the right-angle.

Let $A B C$ be a right-angled triangle having the right-angle $B A C$. I say that the square on ($\dot{\alpha} \pi \delta$) $B C$ is equal to the [sum of the] squares on ($\dot{\alpha} \pi o ́) B A, A C^{\prime \prime}$.

Elements, I. 47

"In right-angled triangles the square on ($\dot{\alpha} \pi$ ó) the side subtending the right-angle is equal to the squares on ($\dot{\alpha} \pi o$) the sides surrounding the right-angle.

Let $A B C$ be a right-angled triangle having the right-angle $B A C$. I say that the square on ($\dot{\alpha} \pi o$) $B C$ is equal to the squares on ($\dot{\alpha} \pi o$) BA, $A C^{\prime \prime}$.

The proof of the proposition 1.47

Euclid's theory of equal figures

Euclid's theory of equal figures

Euclid's theory of equal figures

Euclid's theory of equal figures

Elements, I. 47

$\square, \square=\square$
Euclid's theory of equal figures

Pythagorean theorem via propositions I .47 and VI. 31

V.24: "I say that the first and the fifth, added together ($\sigma \cup \cup \tau \varepsilon \theta \varepsilon \varepsilon v$), AG, will also have the same ratio to ...".

$$
a: c:: d: f, b: c:: e: f \Rightarrow(a+b): c::(d+e): f
$$

Problem

$$
\begin{array}{r}
\square, \square \\
\square \\
\square+\square
\end{array}=\square
$$

Euclid's theory of equal figure Euclid's theory of similar figures
$a^{2}+b^{2}=c^{2}$
arithmetic of real numbers

The thesis

$$
\begin{gathered}
\square, \square=\square \\
\square+\square=\square \\
a^{2}+b^{2}=c^{2} \\
a^{2}+b^{2}=c^{2}
\end{gathered}
$$

Euclid's theory of equal figure Euclids theory of similar figures Descartes' arithmetic of line segments arithmetic of real numbers

Descartes, Geometry, p. 298

Arithmetic of line segments: Product

Arithmetic of line segments: Division

$$
x=\frac{a}{b} \quad \text { iff } \quad a: b:: x: 1
$$

Arithmetic of line segments: Square Root

$$
x=\sqrt{a} \text { iff } 1: x:: x: a .
$$

From Greek proportion to Descartes' arithmetic and backwards

$$
\begin{aligned}
& a: b:: c: d \Leftrightarrow a \cdot d=c \cdot b \\
& a: b:: c: d \Leftrightarrow a=\frac{c}{d} \cdot b
\end{aligned}
$$

From Greek proportion to Descartes' arithmetic

$$
\begin{aligned}
& a: b:: c: d \Rightarrow a \cdot d=c \cdot b \\
& a: b:: c: d \Rightarrow a=\frac{c}{d} \cdot b
\end{aligned}
$$

„For, putting a for BD or CD , and c for EF , and x for DF , we have CF $=a-x$, and since CF or $a-x$ is to FE or c, as FD or x is to $B F$, which is consequently $\frac{c x}{a-x}{ }^{\prime \prime}$.

$$
\begin{gathered}
C F: F E:: F D: B F \\
(a-x): c:: x: B F \Rightarrow B F=\frac{c x}{a-x}
\end{gathered}
$$

Ordered field of line segments

$$
\begin{aligned}
& a: b:: c: d \Rightarrow a \cdot d=c \cdot b \\
& a: b:: c: d \Rightarrow a=\frac{c}{d} \cdot b \\
& a \cdot b=b \cdot a \\
& a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& a<b \Rightarrow a \cdot c<b \cdot c \\
& a \cdot 1=a / 1=a, \quad a / a=1, \quad(1 / a) \cdot a=1 \\
& \frac{a}{b} \cdot c=\frac{a \cdot c}{b}, \frac{1}{a} \cdot \frac{1}{b}=\frac{1}{a \cdot b} \\
& \sqrt{a} \cdot \sqrt{a}=a, \quad \sqrt{a^{2}}=a, \quad \sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
\end{aligned}
$$

Pythagorean theorem in Geometry, Book I, p. 302

 Solving the equation $z^{2}=a z+b b$
"I construct a right triangle NLM with one side LM equal to b, the square root of the known quantity $b b$, and the other side LN, equal to $\frac{1}{2}$ a, that is, the half of other know quantity, which was multiplied by z, which I supposed to be the unknown line. Then prolonging MN the base of this triangle to O , so that NO is equal to NL, the whole line $O M$ is the required line z. It is expressed in the following way: $z=\frac{1}{2} a+\sqrt{\frac{1}{4} a a+b b^{\prime}}$.

Pythagorean theorem in Geometry, Book II, p. 342

Finding a tangent to an algebraic curve

"[...] making MA or $\mathrm{CB}=y$, and CM or $\mathrm{BA}=x$, I have an equation expressing the relation between x and y. Then making $\mathrm{PC}=s$, and $\mathrm{PA}=v$, or $\mathrm{PM}=v-y$, and due to the right triangle PMC , we see that $s s$, the square of the base (qui est le carreé de la baze), is equal to $x x+v v-2 v y+y y$, the squares of two sides (qui sont les carées des deux côtés); that is to say

$$
\begin{gathered}
x=\sqrt{s s-v v+2 v y-y y^{\prime \prime}} . \\
s s=x^{2}+(v-y)^{2}
\end{gathered}
$$

Pythagorean theorem in Geometry, Book III, p. 387

Solving a fourth degree equation

"For, putting a for BD or CD, and c for EF, and x for DF, we have CF $=a-x$, and since CF or $a-x$ is to FE or c, as FD or x is to $B F$, which is consequently $\frac{c x}{a-x}$. Now, since in the right triangle BDF one side is x, and other is a, their squares, which are (leurs carrés, qui sont) $x x+a a$, are equal to the square of the base, which is $\frac{c c x x}{x x-2 a x+a a} "$.

$$
x^{2}+a^{2}=\frac{(c x)^{2}}{(a-x)^{2}}
$$

Book II: "[the sum of] the squares of two sides (qui sont les carées des deux côtés); that is to say $x^{2}+(v-y)^{2}$

Book III: "[the sum of] their squares, which are (leurs carrés, qui sont) $x x+a a$

Linguistic layer of La Géométrie

square on the line versus square of the line
"we see that ss, the square of the base (qui est le carreé de la baze), is equal to $x x+v v-2 v y+y y$, the squares of two sides (qui sont les carées des deux côtés)", Book II
"since in the right triangle BDF one side is x and other is a, their squares, which are (leurs carrés, qui sont) $x x+a a$, are equal to the square of the base, which is $\frac{c c x x}{x x-2 a x+a a}$ ", Book III

Descartes' translation of Pappus. Geometry, p. 305

square on the line versus square of the line
Pappus: "if there be given a ratio (λ óros) of the rectangle contained by the two lines so drawn to the square on the third"

Descartes: "let there be a proportion (proportio) of the rectangle contained by the two lines so drawn to the square of the third (ad quadratum reliquæ)"

Clavius, Euclidis Elementorum, p. 229

LIBER I. E\& 229

| THEOR. 33. PROPOS. 47. | 46. |
| :--- | :--- | :--- |

IN rectangulis triangulis,quadratú, quod a latere rectum angulum fubtendente defcribitur, xquale eft eis, qux a lateribus rectum angulum continentibus defcribuntur, quadratis.

I N triágulo ABC, angulus BAC, fite re Cus,a defcribanturq́ue super AB,AC,BC, quadrata A BFG, ACHI, BCDE Dico quadratum BCDE, defcriptum fuper latus
 B C,quod angulo retao opponitur, xquale effe duobus quadratis ABFG, ACHI, quxe faper alia duo latera funt deferipta, fiue hac duo latera x qualia fint, fiue inaqualia. Ducatur enim reCta A K, b parallela ipfi B E, vel ip$f i C D$, fecans $B C$, in L, \& iungantur recta $A D, A E, C F$, BH. Et quia duo anguli BAC, BAG, funt re θi, c erút recta G A, A C, vna linea recta; eodemque modo IA, A B,vna recta linea erunt. Rurfus quia anguli A B F,

References I

Clavius, Ch., Euclidis Elementorum. Libri XV, Roma 1589. Descartes, R., La Géométrie, Lejda 1637. Heiberg, J., Euclidis Elementa, Lipsiae 1883-1888.
Hultsch, F., Pappini Alexandrini Collecionis, Berolini 1877.

References II

Euclid's Elements of Geometry, tr. by R. Fiztpatrick, 2007.
The Geometry of René Descartes, tr. by D.E. Smith and M.L. Lathan, New York 1954.
P. Błaszczyk, K. Mrówka, Euklides, Elementy, Księgi V-VI.

Tłumaczenie i komentarz, Kraków 2013.
P. Błaszczyk, K. Mrówka, Kartezjusz, Geometria. Tłumaczenie i komentarz, Kraków 2015.
P. Błaszczyk, K. Mrówka, Kartezjusz, Dioptryka. Tłumaczenie i komentarz, Kraków 2018.
P. Błaszczyk, From Euclid's Elements to the methodology of mathematics. Two ways of viewing mathematical theory. Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia X, 2018, 5-15.

