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Abstract

We investigate the e�ects of �nancial uncertainty shocks on macroeco-

nomic aggregates in the United States. Financial uncertainty is captured

by appealing to some indicators recently developed. Relying on a nonlinear

VAR, we isolate the e�ects of uncertainty in both recessionary and expan-

sionary periods. As main �ndings, we report how uncertainty shocks have

a negative macroeconomic impact across the business cycle. The asymmet-

ric e�ects are persistent when we include the recent recession. To reduce

the fall in macroeconomic variables, the "unconventional" monetary policy

plays an important role.
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1 Introduction

Recent empirical studies provide evidence how uncertainty is one of the main

driver of the global �nancial crisis and the subsequent slow recovery. In particu-

lar, researchers show that a contraction in the business cycle is reported when an

unexpected increase in uncertainty features. There are several measures which

could be adopted to proxy uncertainty. Bloom (2009) has pioneered the use of

the VIX, the implied stock market volatility based on S&P index, and Baker,

Bloom, and Davis (2016) propose an Economic Policy Uncertainty (EPU) index

based on news article counts. Moreover, Rossi and Sekhposyan (2015) rely on

the Survey Professional Forecasters to construct a forecasting index. Last but

not least, Jurado, Ludvigson, and Ng (2015) develop a macroeconomic uncer-

tainty index based on the common variation in forecast error of a large number

of economic indicators. Meanwhile, Ludvigson, Ma, and Ng (2017) build two

di�erent measures for macroeconomics and �nancial uncertainty. In this project,

we decide to proxy the uncertainty using the �nancial uncertainty measure as

discussed in Ludvigson, Ma, and Ng (2017). In this way, we can study the

impact on the macroeconomic variables and on the monetary policy of the un-

certainty throught �nancial channel. Looking at the monetary policy stance,

Central Banks are used to o�set the negative macroeconomic e�ects of uncer-

tainty shocks lowering the interest rate. However, when the monetary policy rate

is closed to the Zero Lower Bound (ZLB), as occured in the Great Recession,

further stimulus is needed, and an uncertainty shock may push the Central Bank

to rely on "unconventional" policy measures.

How do uncertainty shocks a�ect the conventional and unconventional mon-

etary policies conducted by the Federal Reserves?

We answer this research question contributing the literature by proposing a

nonlinear estimation to understand the asymmetric responses of the macroeco-
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nomic variables to a �nancial uncertainty measure, focusing on the role of the

U.S. monetary policies before and after the Great Recession. Researchers have al-

ready highlighted the role of nonlinearities in the transition of uncertainty shocks

on macroeconomic activities across the business cycle or at the Zero Lower Bound

(i.e., Enders and Jones, 2013; Bijsterbosch and Guérin, 2013; Caggiano, Casteln-

uovo, and Groshenny, 2014; Caggiano, Castelnuovo, and Nodari, 2015; Alessan-

dri and Muntaz, 2014; Caggiano, Castelnuovo, and Pellegrino, 2015; Popp and

Zhang, 2015). But, as far as we know, this paper is the �rst one stressing the

importance of the di�erent monetary policies ("conventional" and "unconven-

tional") in expansion and recession periods.

To empirically scrutinize the potential asymmetric e�ects of macroeconomic

uncertainty shocks, we model a set of macroeconomic indicators with a Smooth

Transition Vector Auto Regression (STVAR). This approach allows us to esti-

mate the e�ects of uncertainty shocks conditional on the state of economy (i.e.,

expansions versus recessions). To model the endogeneity of the transition from

a state to another after an uncertainty shock occurs, we compute the Gener-

alized Impulse Response Functions (GIRFs) proposed by Koop, Pesaran, and

Potter (1996). Since the GIRFs depend on the initial condition, we study the

evolution of the GIRFs over histories (i.e., recessions and expansions). This al-

lows us to compare the IRFs in "good times" versus "bad times". We estimate

a vector of endogenous variables very close to the one proposed by Christiano,

Eichenbaum, and Evans (2005) and by Jurado, Ludvigson, and Ng (2015). The

STVAR includes real variables such as Industrial Production (IP), Employment

(Empl), In�ation (CPI), monetary tools, and uncertainty measures. Following

Gambacorta, Hofmann, and Peersman (2014), we proxy the "unconventional"

monetary policy with the total asset of Fed's Balance Sheet (BS) which rep-

resents the quantitative easing. Since such measure is downloadable from the
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Federal Reserve of St. Louis only from 2002, we collect monthly data of the total

asset of Fed's Balance Sheet for the remaining period (1985-2001). This proxy

allows us to capture the "unconventional" monetary policy e�ectiveness during

the Zero Lower Bound period.

Our main �ndings show that one-standard deviation uncertainty shock trig-

gers asymmetric e�ects on macroeconomic aggregates across the business cycle.

Uncertainty shock has contractionary e�ects both in recessions than in expan-

sions, but such e�ects are more pronounced in the recessionary periods. To o�set

the macroeconomic �uctuation, the Federal Reserve reacts via both the "conven-

tional" (decreasing the Federal Fund rate) and the "unconventional" monetary

policies (increasing the assets of the Fed's balance sheet by 20%). The reaction of

FFR is found to be quantitatively smaller in expansions than in recessions. The

reaction of the Federal Reserve to �nancial uncertainty shock via the "uncon-

ventional" monetary policy is long-lasting. Overall the monetary policy easing

associated with a contraction of economic activity is consistent with an in�ation-

targeting strategy pursued by the monetary policymakers.

Our results provide new evidence on the role played by uncertainty shocks on

"unconventional" monetary policies. A battery of robustness checks con�rms our

main �ndings. From a policy standpoint, this evidence helps the policymaker to

implement tailored monetary policy instruments across the business cycle and in

particular when ZLB is binding.

Counterfactual experiments investigate about the role played by the monetary

policies in recessionary periods. In particular, we assess the importance of the

"unconventional" monetary policy represented by the Balance Sheet. To com-

plete the analysis about monetary policies, we estimate our baseline model in-

troducing a new monetary policy tool, the Shadow Short Rate (SSR). Several

SSRs have been developed to explain the negative behaviour of the short term
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intererest rates relying on the term-structure (as in Krippner, 2013 and Wu and

Xia, 2016) and on macroeconomic and monetary variables (as in Lombardi and

Zhu, 2014). As surveyed in Comunale and Striaukas (2017), researchers can use

Shadow Short Rates to produce a summary metric for the stance of the "con-

ventional" and "unconventional" monetary policies.

The reminder of the paper is organized as follows. Section 2 introduces the

estimated model, the Smooth Transition VAR and the data. Section 3 documents

the empirical results of the baseline model. Section 4 discusses the asymmetric

responses in expansionary and recessionary periods. Section 5 illustrates several

robustness checks and Section 6 shows the counterfactual experiments. Section

7 summarizes the �ndings and provides concluding remarks.

2 Data and Methodology: A Smooth Transition

VAR

The estimated Smooth-Transition VAR model (STVAR) is de�ned as follows:

Xt = F (zt)ΠR(L)Xt + (1− F (zt))ΠE(L)Xt + εt, (1)

εt ∼ N(0,Ωt), (2)

Ωt = F (zt)ΩR + (1− F (zt))ΩE, (3)

F (zt) = exp(−γzt)/(1 + exp(−γzt)), γ > 0, zt ∼ N(0, 1). (4)

where Xt is a set of endogenous variables, Π(L)R and Π(L)E are the polyno-

mial matrices in the lag operator L capturing the dynamics of the system during

recessions and expansions, respectively. The vector of reduced-form residuals (εt)

has zero-mean and heteroskedastic, state-contingent variance-covariance matrix
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Ωt, where ΩR and ΩE refer to the covariance structure of the residuals in reces-

sions and expansions, respectively. F (zt) is a logistic and continuous function

bounded between zero and one which depends on the state variable zt. The slope

parameter γ dictates how smooth is the transition from one regime to another,

i.e. from recessions to expansions and vice versa. If γ → ∞ in (4), then the

transition from one state of economy to the other one is abrupt. Conversely,

small value of γ implies that such transition is smooth.

The vector of endogenous variables relies on Xt = [X1t X2t X3t]
′, where X1t

includes the In�ation (CPI), the Industrial Production (IP), and the Employment

(Empl). The X2t incorporates proxies for the conventional and unconventional

monetary policy measure, the federal fund rate and the total assets of the Fed's

balance sheet, respectively. Following Gambacorta, Hofmann, and Peersman

(2014), we proxy the unconventional monetary policies via the total assets of

Fed's Balance Sheet.1 The vector X3t includes our proxy of uncertainty. We rely

on recent measures of �nancial uncertainty proposed by Ludvigson, Ma, and Ng

(2017) based on the common variation in the h-steps-ahead forecast errors of a

large number of �nancial indicators, u(h). We use the uncertainty measure with

forecast horizon at 1-month (u01), and we perform robustness checks relying on

the 3-months (u03) and 12-months (u12) �nancial uncertainty indicators. Figure

1 plots the uncertainty measures versus the business cycle turning points (shades

1The Federal Reserve faced the Great Recession by adopting an extraordinarily expansionary
monetary policy stance, lowering policy rates close to zero to stimulate the economy. How-
ever, with monetary policy rates close to the zero lower bound (ZLB), when further stimulus
was needed, Central Banks turned to non-interest rate, or non-standard, policy measures.
The measures adopted by Central Banks to counteract de�ationary pressures and to foster
economic growth included increased liquidity provision, extending the term of lending, modify-
ing the collateral framework, forward guidance, and asset-purchase programs (i.e.,quantitative
easing, QE). The aims of these programs have been to reduce long-term interest rates and
thereby stimulate the economy. Such stimulus has substantial e�ects on the size of central
banks' Balance Sheets (Colombo, 2015). Meaning and Zhu (2011) use the Federal Reserve
Balance Sheet information to proxy the unconventional monetary policy tools. Peersman
(2011) studies the (linear) macroeconomic e�ects of unconventional monetary policy in the
Euro Area relying on the size of ECB's Balance Sheet. Also, Gambacorta, Hofmann, and
Peersman (2014) focus on the total assets of Central Banks' Balance Sheet to proxy uncon-
ventional monetary policies.
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area). Notice that �nancial uncertainty spikes occur during recessionary periods.

The uncertainty shock is identi�ed via the Cholesky-decomposition, with the

sample assumptions provided in Christiano, Eichenbaum, and Evans (2005) and

widely adopted in the monetary policy VARs of the literature. In other words,

the slow moving variables (CPI, Industrial Production, and Employment) are or-

dered �rst, whereas the fast moving variables (monetary policy tools) are ordered

last. This ordering implies that monetary policies depend on the real activities.

In setting the monetary policy tools in vector X2, we place the Fed total asset

after the FFR. This re�ects the idea that Fed relies on unconventional monetary

policies by expanding its Balance Sheets after the FFR approaches to zero. The

uncertainty measure is set last in vector Xt. It means that we "purge" our un-

certainty indicator from the contemporaneous movements of our macroeconomic

variables, therefore sharpening the identi�cation of uncertainty shocks. This

identi�cation implies that macroeconomic variables react to uncertainty shocks

with a lag.2 This assumption is plausible for monthly estimations and is in line

with Jurado, Ludvigson, and Ng (2015). However, our identi�cation scheme dif-

fers from that of Jurado, Ludvigson, and Ng (2015) since we take into account

the Fed policy implementation during the Great Recessions.

All the variables in Xt enter in natural logarithms and in real terms (except

the interest rate).

The transition variable zt and the calibration of the smoothing parame-

ter γ are justi�ed as follows. As developed in Auerbach and Gorodnichenko

(2012) and Caggiano, Castelnuovo, and Groshenny (2014), we employ a stan-

dardized backward-looking of twelve-month moving average of industrial pro-

duction growth.3 We calibrate the smoothness parameter γ to match the prob-

2The main results are not a�ected when the uncertainty index is set �rst in vector Xt. The
results are available upon request.

3The transition variable zt has been standardized to be comparable to those employed in the
literature.

8



ability of being in recessions as identi�ed by the NBER business cycle dates

(15% in our sample). The recessionary phase is de�ned as a period in which

Pr(F (zt) > 0.85) ≈ 15%. It means that the economy spends about 15% of

time in recessions and 85% in expansions. This implies setting γ = 1.8. The

choice is consistent with the threshold value z = −0.9% discriminating recessions

and expansions. In particular, if the realizations of the standardized transition

variable zt is lower (higher) than the threshold value z, it will be associated to

recessions (expansions). Figure 2 plots the transition function F (zt) versus the

NBER turning points and shows that high values of F (zt) tend to be associated

with NBER recessions.

Given the high nonlinearity of the model, we estimate the STVAR in (1) rely-

ing on Markov-Chain Monte Carlo simulation (Chernozhukov and Hong, 2014),

see section B of the Appendix for details. To model the endogeneity of the transi-

tion from one state to another after an uncertainty shock occurs, we compute the

Generalized Impulse Response Functions (GIRFs) proposed by Koop, Pesaran,

and Potter (1996). Since the GIRFs depend on the initial condition, we study

the evolution of the GIRFs over histories (i.e., recessions and expansions). This

allows us to compare IRFs in normal times versus uncertainty times. Our data

are monthly and spans from 1985M1 through 2011M12. We estimate a nonlinear

VAR including �ve lags, as suggested by the Akaike information criterion. Our

model includes a constant. The data are seasonally adjusted and retrieved from

the Federal Reserve Bank of St.Louis.

Before estimating the STVAR in (1), we perform a linearity test. Linearity

is tested replacing the transition variable (zt) by the third order Taylor series

approximation around γ = 0, as suggested by Teräsvirta and Yang (2014). We

perform an LM test which suggests a strong rejection of the linearity for the

system as a whole in favor of a STVAR.
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3 Results

Figure 3 and Figure 4 plot the Generalised IRFs (GIRFs) to a one-standard

deviation uncertainty shock identi�ed via the Ludvigson, Ma, and Ng (2017)

�nancial uncertainty measure with forecast horizon equal to 1-month (u01). The

dotted-blue lines denote the GIRFs in expansions, whereas the red lines the

ones in recessions. The shaded bands refer to the 68% con�dence intervals.

The impulse responses are interpreted as deviations from the steady-state and

expressed in percentage change. Figure 3 reports the 68% con�dence intervals for

the expansionary responses, while Figure 4 reports the 68% con�dence intervals

for the recessionary ones. At the �rst glance, uncertainty shocks trigger negative

macroeconomic �uctuations both in expansions and in recessions. However, in

expansions the reactions of macroeconomic variables to uncertainty shocks are

quantitatively smaller than in recessions.

In recessions, an uncertainty shock decreases the Industrial Production by

−1% after two months the shock occurs. Hence, the response, which is statis-

tically signi�cant as denoted in Figure 3, hits a trough of −6.25% at 8 months

after the shock occurs. Afterwards, the response returns slowly to its steady-

state which is not completely reached after 60 months. Moreover, the shock

has a long-lasting de�ationary e�ect. The in�ation reaches a trough of −2.9%

(the 60th month), and it remains below the pre-level shock for all the period.

The shock decreases employment by −2.36% thirteen-months after the shock

occurs. Interestingly, the GIRFs predict a strong reaction of the Federal Reserve

via "unconventional" monetary policies which determine an increase in the Fed

total assets of 20% with respect to the pre-shock levels. The reaction of the Cen-

tral Bank via "conventional" monetary policy tools (decreasing the short term

interest rate) is larger in recessions (as the Great Recession) than in expansions.

This results may be driven by the fact that our sample size includes the period
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in which the FFR approaches zero.

In expansions, the Industrial Production decreases with a trough response

of −1.9% at �fteen-months after the shock occurs and after that, the e�ect

gradually returns to the steady-state. The response of the other macroeconomic

variables, In�ation (CPI) and Employment (Empl) is qualitatively similar to the

Industrial Production one and their throughs coincide with that of Industrial

Production. The short term interest rate (FFR) reacts to uncertainty shock

via the "conventional" monetary policy, following an in�ation targeting strategy

path.

These results corroborate those reported in previous contributions on the

"demand" type of e�ects triggered by uncertainty shocks in the U.S. economy

(i.e., Bloom, 2009; Baker, Bloom, and Davis, 2013; Caggiano, Castelnuovo, and

Groshenny, 2014; Leduc and Liu, 2013; Colombo, 2013; Alessandri and Muntaz,

2014). Our �ndings are supported by the theoretical studies (i.e., Basu and

Bundick, 2015; Basu and Bundick, 2015) which document the fall of nominal

and real variables after an uncertainty shock occurs, and by the empirical anal-

ysis in which uncertainty shocks is found to trigger asymmetric e�ects across

the business cycle (i.e., Caggiano, Castelnuovo, and Pellegrino, 2015; Caggiano,

Castelnuovo, and Groshenny, 2014). Moreover, our evidences are in line with

the previous studies which highlight that when the investment irreversibility, the

level of uncertainty a�ects the value of investment opportunities (i.e., Bernanke,

1983; Bloom, 2009; Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry,

2014).
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4 Asymmetric reactions across regimes and spec-

i�cations

As main �ndings, we provide evidence how uncertainty shock has a recessionary

behavior in both expansions and recessions. In particular, we contribute to the

literature showing how larger (in absolute value) negative e�ects in recessions

than in expansions. Are the reactions of macroeconomic variables to uncertainty

shocks statistically signi�cant di�erent across regimes? We answer this ques-

tion proposing a statistical test based on the empirical density of the di�erence

between the reaction of macroeconomic variables across regimes. The empirical

density is based on 500 realizations of such di�erences for each horizon h. We

run this test for all our variables of the baseline. Figure 5 reports the results

including the Ludvingson, Ma and Ng (2017) �nancial uncertainty measure (u01)

as uncertainty proxy. If the zero line is not included in the con�dence bands,

then there will be evidence of state-dependent reactions.

According to Figure 5, we �nd statistically signi�cant di�erences in the reac-

tions of all variables included in our baseline speci�cation across regimes.

5 Robustness checks

We check the robustness of our �ndings to a number of perturbations of the

baseline STVAR model. In particular, we focus on i) di�erent measures of un-

certainty; ii) sample size and excluding the Zero Lower Bound period.

Alternative measures of �nancial uncertainty. In the vector (1), we im-

plement the Ludvigson, Ma, and Ng (2017) measure with forecast horizon equal

to 1-month (u01) as uncertainty proxy. As �rst robustness check, we estimate

the STVAR using the uncertainty proxy relied on forecasting horizon equal to

3-months (u03) and to 12-months (u12). Figure 6 and Figure 7 plot the robust-
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ness results for the recessionary and expansionary phases, respectively. The red,

blue and green lines plotted the GIRFs when uncertainty proxied by the Ludv-

ingson, Ma and Ng (2015) measures u01, u03 and u12, respectively. Figure 5

and Figure 6 show that qualitatively our baseline results are not a�ected by the

horizon change. However, the forecast horizon of uncertainty measures a�ects

quantitatively the macroeconomic e�ects of such shocks. Those results are in line

with Ludvigson, Ma, and Ng (2017). Indeed, they point out that when the fore-

cast horizons of their measures increase, the macroeconomic e�ects of �nancial

uncertainty increase as well. Because of that, the Fed reacts via a stronger un-

conventional reaction that is higher as the forecasting horizons of increases. We

repeat our exercise replacing the �nancial uncertainty Ludvigson, Ma, and Ng

(2017) measures with an alternative indicator of uncertainty shock, the VXO.4

The magenta lines of �gure 6 and 7 refer to the GIRFs when uncertainty proxied

by the VXO. The reaction of macroeconomic variables is short-lived and smaller

than the ones found relying on the Jurado, Ludvigson, and Ng (2015) proxies.

Jurado, Ludvigson, and Ng (2015) provide evidence that e�ects of uncertainty

shocks might depend on the source of the shocks and on its duration. More-

over, they found that the estimated duration of a shock to the VXO is around 4

months, whereas the one of macroeconomic uncertainty is much more persistent

than the VXO. Our results are in line with the Jurado, Ludvigson, and Ng (2015)

prediction. Interestingly, the Federal Reserve reacts to a VXO shocks through

unconventional monetary policies as shown by the behavior of the Balance Sheet.

Sample size and ZLB. The baseline STVAR model is estimated on the

sample from 1960M7 to 2018M12. The results concening the asymmetric e�ects

of �nancial shocks conditional on the state of economy may be too heavily driven

by the inclusion of the Great Recession period in our sample. We investigate

4The VXO is employed instead of the VIX, since the VIX is available from 1990. The VXO
is from 1985M1, the standard deviation of stock market returns as in Bloom (2009). From
1986M1 the VXO is from the Chicago Bard of Options Exchange (CBOE).
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about this issue repeating our analysis on the sample spanning to the month just

prior to the recession, 1960M7 to 2007M11, and excluding from vector Xt our

proxy for the "unconventional" monetary policy. In other words, we allow the Fed

to react to uncertainty shocks only via "conventional" monetary tools (lowering

the interest rate). Figure 8 depicts the results. In particular, the red lines refers

to the median generalised IRFs (GIRFs) in recessions when uncertainty proxied

by the Ludvingson, Ma and Ng (2017) measure (u01). The uncertainty shocks

trigger macroeconomic �uctuation even excluding the ZLB period. Of course,

the reaction of the macroeconomic aggregates is weaker, whereas the ones of the

FFR is stronger than our baseline speci�cation. This results is in line with Evans,

Fisher, Gourio, and Krane (2015). They �nd that uncertainty is important to

study the FFR pattern in the pre-ZLB period. Comparing Figure 8 and Figure 2

an interesting picture emerges. The presence of the ZLB may magnify the e�ects

of uncertainty shocks (Basu and Bundick, 2015). Relying on "unconventional"

monetary policy when the ZLB binds, we �nd that the Fed o�sets the negative

macroeconomic �uctuations.

Overall our robustness checks con�rm the nonlinearity of uncertainty shock

e�ects and their impact on the "conventional" and "unconventional" monetary

policy decision of the Federal Reserve.5

6 Counterfactual Experiments

Did the Fed's Balance Sheet policies have a material impact on the US economy

when uncertainty shocks occur? We answer this question proposing a coun-

terfactual experiment in which we "switch down" the coe�cients of the Balance

5Our results are also robust to: di�erent ordering; lag speci�cations; di�erent values of pa-
rameters that govern the transition from one regime to another. Moreover, our �ndings are
qualitatively robust to the alternative proxy of uncertainty, such as the quarterly Rossi and
Sekhposyan (2015) macroeconomic measure.

14



Sheet in the baseline VAR. In practical terms, we allow the Federal Reserve to re-

act to a �nancial uncertainty shock via only the "conventional" monetary policy

tools. The main �ndings provide evidence that the monetary policy responses

rely on the Balance Sheet only during recessions. Hence, our counterfactual

experiments are focused on these periods.

Figure 9 represents the reactions of macroeconomic activity to �nancial un-

certainty shock in the counterfactual (dotted lines) and baseline scenarios (solid

lines). Two results stand out. First of all, the macroeconomic e�ects of uncer-

tainty become in absolute value larger than the ones derived from our baseline.

Second, when the FED does not rely on the Balance Sheet increase the e�ects

become more persistent. After 60 months, the macroeconomic variables are still

below their pre-shock levels. It means that the "unconventional" monetary policy

reaction is a powerful tool to counteract economic downturns due to uncertainty

shock during recessionary periods.

In addition, we replicate the experiment introducing a new monetary policy

tool: the Shadow Short Rate (SSR). We adopt the Shadow Short Rate introduced

by Lombardi and Zhu (2014) which is an overall stance of the "conventional" and

"unconventional" monetary policy. In this case, the counterfactual experiment

assumes a SSR equals to zero. In the new baseline, we observe a negative short

term interest rate since the SSR could assume negative values which are not

allowed to the FFR.

Figure 10 reports the counterfactual experiment including the SSR instead of

the short term interest rate (FFR) and the Balance Sheet (BS). Meanwhile, Fig-

ure 12 reports the experiment adding a �nancial variable such as the S&P500. As

discussed in Bloom (2008) and Jurado, Ludvingson, and Ng (2015), the S&P500

indicator is crucial to explain the channel of the uncertainty shock on macroeco-

nomic variables since the S&P500 is highly correlated to the uncertainty proxies
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implemented in their researches. In the baseline speci�cation, we exclude the

S&P500 since it is not highly correlated with the �nancial uncertainty measure

we adopt and using a nonlinear estimation for our model we keep the baseline

model as parsimonious as possible. In Figure 11 and Figure 12, we note how the

reaction of macroeconomic variables (Industrial Production and Employment)

worsened with respect to the baseline speci�cation. However, as expected the

result for In�ation is di�erent. There is a less persistent response in the case

of counterfactual since the SSR is anchored to be zero and the more persistent

response in the new baseline is driven by the negative SSR.

7 Conclusion

We estimate a nonlinear VAR model, the Smooth Transition VAR (STVAR),

where we include standard macroeconomic variables and uncertainty proxies for

the U.S. economy. We investigate the impact of the uncertainty shock on the

monetary policies. For this purpose, we introduce both the "conventional" (short

term interest rate) and "unconventional" (Balance Sheet) tools implemented by

the Federal Reserve. The non-linearities inducted by the STVAR allow us to

disentagle the behavior of the macroeconomic variables in two periods: recessions

and expansions. Uncertainty shock is found to trigger negative macroeconomic

�uctuations across the business cycle. To o�set macroeconomic �uctuation, the

Federal Reserve reacts lowering the FFR. However, when the FFR is close to

zero uncertainty shocks push the Fed to react via non-standard monetary policy

tools. Counterfactual experiments provide evidence about the role of the Balance

Sheet during the recessionary periods.
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Figures

Figure 1: Uncertainty measures vs Business cycle

Notes: The shaded area indicate the U.S. recessionary phases (1960:7-2018:12), whereas

the blue line refers to the uncertainty measure at 1 month proposed by Ludvingson, Ma and

Ng (2017).

Figure 2: Transition function vs Business cycle

Notes: The shaded area indicate the U.S. recessionary phases (1960:7-2018:12), whereas

the blue line refers to the backward looking 12-month moving average of IP growth.
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Figure 3: E�ects of uncertainty shocks

Notes: The red lines refers to the generalised IRFs (median) in recessions, whereas the blue

lines to the ones in expansions. Uncertainty proxied by the Ludvingson, Ma and Ng (2017)

measure (u01). Gray areas refers to the 68% con�dence bands. The variables are expressed in

percent deviations with respect to their steady state. The horizontal axis identi�es months.
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Figure 4: E�ects of uncertainty shocks

Notes: The red lines refers to the generalised IRFs (median) in recessions, whereas the blue

lines to the ones in expansions. Uncertainty proxied by the Ludvingson, Ma and Ng (2017)

measure (u01). Gray areas refers to the 68% con�dence bands. The variables are expressed in

percent deviations with respect to their steady state. The horizontal axis identi�es months.
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Figure 5: Di�erences in Generalized Impulse Responses between recessions and
expansions (u01)

Notes: Di�erences in Generalized Impulse Responses between the recessions and expan-

sions. Uncertainty proxied by the Ludvingson, Ma and Ng (2017) measure (u01). Dotted lines

refer to the the 68% con�dence bands. Horizontal axis denotes monthly horizon.
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Figure 6: E�ects of uncertainty shocks

Notes: The �gure plots the GIRFs to di�erent uncertainty shocks occuring during reces-

sionary periods. The red, blue and green lines plotted the GIRFs when uncertainty proxied by

the Ludvingson, Ma and Ng (2015) measures u01, u03 and u12, respectively. The size spans

from 1960M7 to 2018M12. The variables are expressed in percent deviations with respect to

their steady state. The horizontal axis identi�es months.
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Figure 7: E�ects of uncertainty shocks

Notes: The �gure plots the GIRFs to di�erent uncertainty shocks occuring during expan-

sionary periods. The red, blue and green lines plotted the GIRFs when uncertainty proxied by

the Ludvingson, Ma and Ng (2015) measures u01, u03 and u12, respectively. The size spans

from 1960M7 to 2018M12. The variables are expressed in percent deviations with respect to

their steady state. The horizontal axis identi�es months.
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Figure 8: E�ects of uncertainty shocks in recessions (from 1960M7 to 2007M11)

Notes: The red lines refers to the median generalised IRFs (GIRFs) in recessions when

uncertainty proxied by the Jurado, Ludvingson and Ng (2015) measure (u01). The blue and

green lines plotted the GIRFs when uncertainty proxied by the Ludvingson, Ma and Ng (2017)

measures u01. The size spans from 1960M7 to 2007M11. The vector Xt includes only the

proxy for the conventional monetary policy excluding the unconventional one. The variables

are expressed in percent deviations with respect to their steady state. The horizontal axis

identi�es months.
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Figure 9: GIRFs: Baseline vs Counterfactual

Notes: GIRFs in recessions. The solid and dotted red lines refer to the median generalised

IRFs (GIRFs) from the baseline and the counterfactual scenarios. Uncertainty proxied by

the Ludvingson, Ma, and Ng (2017) measure (u01). The variables are expressed in percent

deviations with respect to their steady state. The horizontal axis identi�es months.Horizontal

axis denotes monthly horizon.
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Figure 10: GIRFs: Baseline vs Counterfactual (with SSR)

Notes: GIRFs in recessions. The solid and dotted red lines refer to the median generalised

IRFs (GIRFs) from the baseline and the counterfactual scenarios. Ludvingson, Ma, and Ng

(2017) measure (u01). The conventional and unconventional monetary policy indicators are

replaced by the shadow short rate (SSR) proxy proposed by Lombardi and Zhu (2014). The

variables are expressed in percent deviations with respect to their steady state. The horizontal

axis identi�es months.Horizontal axis denotes monthly horizon.
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Figure 11: GIRFs: Baseline vs Counterfactual (with SSR and S&P500)

Notes: GIRFs in recessions. The solid and dotted red lines refer to the median generalised

IRFs (GIRFs) from the baseline and the counterfactual scenarios. udvingson, Ma, and Ng

(2017) measure (u01). The conventional and unconventional monetary policy indicators are

replaced by the shadow short rate proxy proposed by Lombardi and Zhu (2014). Moreover, the

S&P500 is added to the vector of endogenous variables. The variables are expressed in percent

deviations with respect to their steady state. The horizontal axis identi�es months.Horizontal

axis denotes monthly horizon.
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Technical Appendix

This Technical Appendix reports the estimation of the non-linear VARs, the sta-

tistical evidence in favor of a nonlinear relationship between the endogenous var-

ialbes included in the STVAR, and the computation of the Generalised Impulse

Responses. All these Sections are partially drawn on Caggiano, Castelnuovo,

Colombo, and Nodari (2015) Appendix.

A Linearity Test

We test linearity versus non-linearity applying the Teräsvirta and Yang (2014)

test for Smooth Transition Vector AutoRegression (STVAR) with a single tran-

sition variable as in our framework. According to this test, we assume linearity

under null hypothesis versus a nonlinear model with a logistic smooth transi-

tion component under alternative hypothesis. Let us assume a p-dimensional

2-regime approximate logistic STVAR model:

Xt = Θ
′

oYt +
n∑
i=1

Θ′iYtz
i
t + εt, (5)

where Xt is the (p x 1) vector of endogenous variables, Yt= [Xt−1 | . . . |Xt−k]

is the (k x p+q) vector of exogenous variables which includes lagged variables

(k) and a vector of constants. The transition variable is zt, while Θ0 and Θi are

matrices of parameters. In our empirical assessment, we have p=9 as number of

endogenous variables, q=1 as number of exogenous variables, and k=5 as number

of lags. Under the null hypothesis of linearity, we assume Ho : Θi=0 ∀i. The

Teräsvirta and Yang (2014) test features the following four steps:

1) We estimate the restricted model (Ho : Θi=0 ∀i) by regressing Xt on Yt.

We collect the residual Ẽ calculating the matrix for the residual sum of squares

RSS0=Ẽ'Ẽ.
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2) We run an auxiliary regression of Ẽ on (Yt,Zn) where the subscript n indicates

the n-order Taylor expansion of the transition function. We save the residuals Ξ̃

computing the matrix for the residual sum of squares RSS1=Ξ̃'Ξ̃.

3) We compute the test-statistic:

LM = Ttr[RSS−10 (RSS0 −RSS1)] = T [p− tr(RSS−10 RSS1)]. (6)

Under the null hypothesis, the test statistic is distributed as a χ2 with a number

of degree of freedoms equals the number of restrictions, p(kp+q). We compute

two LM-type linearity tests �xing the value of the n-order of the Taylor expansion

egual to n = 1 and n = 3 (as proposed by Luukkonen, Saikkonen, and Teräsvirta,

1988). In our estimation, LM=791 and LM=1738 when n = 1 and n = 3,

respectively. The corresponding p-value in both tests are zero. In other words,

our model is present non-linear dynamics.

B Estimation of the Non-linear VARs

Our STVAR model (1)-(4) is estimated via maximum likelihood. The log -

likelihood function is as follows:

logL = const− 1

2

T∑
t=1

log|Ωt| −
1

2

T∑
t=1

ε′tΩ
−1εt, (7)

where the vector of residuals εt = Xt − (1 − F (zt))ΠEXt−1 − F (zt)ΠRXt−1.

Our purpose is to estimate the parameters Ψ = {ΩR,ΩE,ΠR(L),ΠE(L)}, where

Πj(L) = [Πj,1, ...,Πj,p], j ∈ {R,E}.

Due to the high non-linearity of the model its estimation is problematic using

standard optimisation procedures. Hence, as in Auberbach and Gorodnichenko

(2012), we employ the procedure as described as follows.
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Conditional on γ, ΩR, ΩE, where γ is the slope parameter calibrated as described

in section 2, the model is linear in ΠR, ΠE. Hence, for a given guess on γ, ΩR, ΩE,

the coe�cients ΠR, ΠE can be estimated by minimizing 1
2

∑T
t=1ε

′
tΩ
−1εt. Hence,

we can re-write the regressors as below.

Let Wt = [F (zt)Xt−1(1−F (zt))Xt−1...F (zt)Xt−p(1−F (zt))Xt−p] be the extended

vector of regressors, and Π = [ΠR(L)ΠE(L)]. Consequently, we can write εt =

Xt −ΠW′
t. In this case, the objective function becomes:

1

2

T∑
t=1

(Xt −ΠW
′

t)
′
Ω−1t (Xt −ΠW

′

t). (8)

We can show that the �rst order condition with respect to Π is given by:

vecΠ
′
= (

T∑
t=1

[Ω−1t ⊗W
′

tWt])
−1vec(

T∑
t=1

W
′

tXtΩ
−1
t ). (9)

We iterate this procedure over di�erent sets of values for {ΩR, ΩE} (conditional

on a given value for γ). For each set of values, Π is obtained and the logL (7) is

calculated.

Due to the high non-linearity of the model in its parameters, we might get sev-

eral local optima. Then, it is recommended to try di�erent starting values of

γ. To guarantee positive de�niteness of the matrices ΩR and ΩE, we focus on

the alternative vector of parameters Ψ= {chol(ΩR), chol(ΩE), ΠR(L), ΠE(L)},

where chol means the Cholesky decomposition.

We compute the con�dence intervals using a Markov Chain Monte Carlo (MCMC)

algorithm developed by Chernozhukov and Hong (2003) (CH hereafter). This

methodology gives us both a global optimum and densities for the parameter

estimates.

We implement the CH estimation via a Metropolis-Hastings algorithm. Given a

starting value Ψ0, the procedure constructs chains of length N of the parameters
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of the estimated model following two steps:

Step 1: Draw a candidate vector of parameter values Θ(n) = Ψ(n) +ψ(n) for the

chain's n + 1 state, where Ψ(n) is the current state and ψ(n) is a vector of i.i.d.

shocks drawn from N(0,ΩΨ), and ΩΨ is a diagonal matrix.

Step 2: Set the n + 1 state of the chain Ψ(n+1) = Θ(n) with probability

min{1, L(Θ(n))/L(Ψ(n))}, where L(Θ(n)) is the value of the likelihood function

conditional on the candidate vector of parameter values, and L(Ψ(n)) is the value

of the likelihood function conditional on the current state of the chain. Other-

wise, set Ψ(n+1) = Ψ(n).

The starting value Θ(0) is calculated using the second-order Taylor approxima-

tion of the model described from (1) to (4) in the section 2, hence the model

can be written as regressing Xt, Xtzt, and Xtz
2
t . We employ the residuals from

this regression to �t the expression for the reduced-form time-varying variance-

covariance matrix of the VAR (as explained in the main text) using maximum

likelihood to estimate ΩR and ΩE.

We can construct Ωt, conditional on these estimates and given the calibration

for γ. Conditional on Ωt, we can compute the starting values for ΠR(L) and

ΠE(L) using equation (9).

Given the calibration for the initial (diagonal matrix) ΩΨ, a scale factor is ad-

justed to generate an acceptance rate close to 0.3, the typical value for this

computational methods as pointed out by Canova (2007). The estimation ac-

counts for N = 50, 000 draws and we use the last 20% for inference.

As described by CH, Ψ∗ = 1
N

∑T
t=1Ψ

(n) is consistent estimate of Ψ under stan-

dard regularity assumptions on maximum likelihood estimators. The covariance

matrix of Ψ is given by V = 1
N

∑T
t=1(Ψ

(n) − Ψ∗)2 = var(Ψ(n)), which is the

variance of the estimates in the generated chain.
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C Generalized Impulse Response Functions

The Impulse Response Functions for the STVAR model are computed following

the approach introduced by Koop, Pesaran, and Potter (1996) which propose

an algorithm to calculate the Generalized Impulse Response Functions (GIRFs).

The implementation of their procedure is composed of the following steps.

1) We construct the set of all possible histories Λ of length p = 12 : {λi ∈ Λ},

where Λ contain T − p+ 1 histories λi and T is the sample size (T=312).

2) We separate the set of all recessionary histories from that of all expansionary

histories. We calculate the transition variable zλi for each λi. If zλi ≤ z∗=-0.9 %,

then λi ∈ ΛR, where ΛR refers to all recessionary histories; if zλi > z∗ = −0.9%,

then λi ∈ ΛE, where ΛE refers to all expansionary histories.

3) We select at random one history λi from the set ΛR, taking Ω̂λi obtained as

follows:

Ω̂λi = F (zλi)Ω̂R + (1− F (zλi))Ω̂E, (10)

where zλi is the transition variable computed for the selected history λi. Ω̂R and

Ω̂E are calculated from the generated MCMC chain of the parameter values dur-

ing the estimation step. As in Koop et al. (1996), we consider the distribution

of parameters rather than their mean values to allow for parameter uncertainty.

4) We estimate the variance-covariance matrix Ω̂λi using the Cholesky-decomposition:

Ω̂λi = ĈλiĈ
′
λi
, (11)

we orthogonalize the estimated residuals to get the structural shocks as:

e
(j)
λi

= Ĉ−1λi ε̂. (12)
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5) From eλi draw with replacement h nine-dimensional shocks and get the vector

of bootstrapped shocks

e
(j)∗
λi

= {e∗λi,t , e∗
∗
λi,t+1

, ..., e∗∗λi,t+h}, (13)

where h is the number of horizons for the IRFs we compute.

6) We form another set of bootstrapped shocks which are equal to (13) except

for the kth shock in e
(j)∗
λi

which is the shock we perturb by a δ amount. We call

the vector of bootstrapped perturbed shocks as e
(j)δ

λi
.

7) We transform back e
(j)∗
λi

and e
(j)δ

λi
as follows:

ε̂
(j)∗
λi

= Ĉλie
(j)∗
λi
, (14)

and

ε̂
(j)δ

λi
= Ĉλie

(j)δ

λi
. (15)

8) We use (14) and (15) to simulate the evolution of X
(j)∗
λi

and X
(j)δ
λi

and we

construct the GIRF (j)(h, δ, λi) as X
(j)∗
λi

- X
(j)δ
λi

.

9) Conditional on history λi, repeat for j=1,...,B vectors of bootstrapped resid-

uals and get GIRF 1(h, δ, λi), GIRF
2(h, δ, λi), ..., GIRFB(h, δ, λi). We set

B=500.

10) We calculate the GIRF conditional on history λi as:

ˆGIRF
(i)

(h, δ, λi) = B−1
B∑
j=1

GIRF (i,j)(h, δ, λi). (16)

11) We repeat all previous steps for i=1,...,500 histories belonging to the set of re-

cessionary histories, λi ∈ ΛR, and we get ˆGIRF
(1,R)

(h, δ, λ1,R), ˆGIRF
(2,R)

(h, δ, λ2,R),

..., ˆGIRF
(500,R)

(h, δ, λ500,R) where the subscript R means that we are condition-
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ing upon recessionary histories.

12) We take the average and we get ˆGIRF
(R)

(h, δ,ΛR), which is the average

GIRF under recessions.

13) We repeat all the previous steps from 3 to 12 for 500 histories belonging to

the set of all expansions and we get ˆGIRF
(E)

(h, δ,ΛE).

14) We compute the 68% con�dence bands for the IR by picking up for each hori-

zon of each state, the 16th and 84th percentile of the densities ˆGIRF
([1:500],R)

and ˆGIRF
([1:500],E)

.
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