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V. Arnold observed in his seminal paper that solutions of the Euler equations
for ideal fluid motion can be viewed as geodesics of a certain right-invariant
metric on the group of volume-preserving diffeomorphisms (known as volumor-
phisms), Dµ(M). In essence, this approach showcases the natural framework
in which to tackle this infamous Cauchy problem from the so-called Lagrangian
viewpoint. In their celebrated paper Ebin and Marsden provided the formula-
tion of the above in the Hs Sobolev setting. Here they proved that the space of
Hs volumorphisms can be given the structure of a smooth, infinite dimensional
Hilbert manifold. They illustrated that, when equipped with a right-invariant
L2 metric, the geodesic equation on this manifold is a smooth ordinary differ-
ential equation. They then applied the classic iteration method of Picard to
obtain existence, uniqueness and smooth dependence on initial conditions. In
particular, the last property allows one to define a smooth exponential map on
Ds
µ(M) in analogy with the classical construction in finite dimensional Rieman-

nian geometry. Hence, the work of Arnold, Ebin and Marsden allows one to
explore the problem of ideal fluid motion armed with tools from Riemannian
geometry.
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