MOMENT SEQUENCES AND ORTHOGONAL POLYNOMIALS

CHRISTIAN BERG, UNIVERSITY OF COPENHAGEN

After research in potential theory I have for the last 40 years been fascinated by moment problems and orthogonal polynomials, an area with an interplay between complex analysis, functional analysis and operator theory. Although it is a very classical subject, there has been a lot of recent work, see e.g. [1]. My own research has been focused on what is called indeterminate moment problems, i.e. the case where different positive measures have the same moments.

I will define moment sequences of Stieltjes, Hamburger and Hausdorff and explain how they are characterized. I will also tell a little about the fascinating life and work of the Dutch mathematician Stieltjes, and why he ended up in Toulouse.

I will discuss the theory of orthogonal polynomials associated with a positive measure on the real line and give examples of determinate and indeterminate moment problems.

I will also discuss a joint result with Antonio Durán from Seville about a "product transformation" from Hausdorff moment sequences to Stieltjes moment sequences, showing that $(n!)^c$ is a Stieltjes moment sequence for any c > 0. This result was inspired by work about exponential functionals of Levy processes due to the French School of probabilists around Bertoin and Yor. It turns out that $(n!)^c$ is determinate for $0 < c \leq 2$ but indeterminate when c > 2.

I shall end with some new results of Yafaev, Szwarc and myself about closability of certain operators related to moment problems.

References

 M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge 2005.